清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Estimation of actual evapotranspiration: A novel hybrid method based on remote sensing and artificial intelligence

自适应神经模糊推理系统 蒸散量 均方误差 归一化差异植被指数 环境科学 分水岭 植被(病理学) 数学 统计 叶面积指数 水文学(农业) 遥感 模糊逻辑 计算机科学 机器学习 生态学 人工智能 模糊控制系统 地理 工程类 病理 岩土工程 生物 医学
作者
Fatemeh Hadadi,Roozbeh Moazenzadeh,Babak Mohammadi
出处
期刊:Journal of Hydrology [Elsevier BV]
卷期号:609: 127774-127774 被引量:38
标识
DOI:10.1016/j.jhydrol.2022.127774
摘要

Actual evapotranspiration (AET) is one of the decisive factors controlling the water balance at the catchment level, particularly in arid and semi-arid regions, but measured data for which are generally unavailable. In this study, performance of a base artificial intelligence (AI) model, adaptive neuro-fuzzy inference system (ANFIS), and its hybrids with two bio-inspired optimization algorithms, namely shuffled frog leaping algorithm (SFLA) and grey wolf optimization (GWO), in estimating monthly AET was evaluated over 2001–2010 across Neishaboor watershed in Iran. The inputs of these models were categorized into three groups including meteorological, remotely sensed, and hybrid-based predictors, and defined in the form of 8 different scenarios. Net radiation (Rn), land surface temperature (LST), normalized difference vegetation index (NDVI), soil adjusted vegetation index (SAVI), and soil wetness deficit index (SWDI) were the remotely sensed predictors, computed using MODIS satellite images on the monthly scale for the study area. The results showed that the SWDI predictor has played a significant role in improving the accuracy of AET estimation, with the highest error reduction (12.5, 17 and 26.5% for ANFIS, ANFIS-SFLA, and ANFIS-GWO, respectively) obtained under scenarios including SWDI compared to corresponding scenarios excluding this predictor. In testing set, the three aforementioned models exhibited their best performance under Scenario 8 (RMSE = 11.93, NSE = 0.69, RRMSE = 0.37), Scenario 4 (RMSE = 11.06, NSE = 0.74, RRMSE = 0.37) and Scenario 4 (RMSE = 10.9, NSE = 0.76, RRMSE = 0.36), respectively. Coupling the SFLA and GWO optimization algorithms to the base model improved the accuracy of AET estimation, with the maximum error reduction for the two algorithms being about 12% (Scenarios 2 and 4) and 14% (Scenario 4), respectively. Examining the performance of the best scenarios of the three models in three intervals including the first, middle, and last third of measured AET values showed that all models were the most accurate in the first third interval. The results also indicated that all models have had higher accuracies in the first and middle third intervals of under-estimation set and the last interval of over-estimation set.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
斯文败类应助ada采纳,获得10
2秒前
量子星尘发布了新的文献求助10
12秒前
李东东完成签到 ,获得积分10
32秒前
酶没美镁完成签到,获得积分10
42秒前
48秒前
量子星尘发布了新的文献求助10
49秒前
53秒前
噼里啪啦完成签到,获得积分10
1分钟前
清爽玉米发布了新的文献求助10
1分钟前
fogsea完成签到,获得积分0
1分钟前
Richardisme完成签到 ,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
晶晶完成签到,获得积分10
1分钟前
VPN不好用完成签到,获得积分10
1分钟前
ww完成签到,获得积分10
1分钟前
1437594843完成签到 ,获得积分10
1分钟前
河鲸完成签到 ,获得积分10
1分钟前
瓦罐完成签到 ,获得积分10
1分钟前
jlwang完成签到,获得积分10
2分钟前
keyaner完成签到,获得积分10
2分钟前
清爽玉米完成签到,获得积分10
2分钟前
握瑾怀瑜完成签到 ,获得积分0
2分钟前
MchemG应助科研通管家采纳,获得20
2分钟前
小蘑菇应助科研通管家采纳,获得10
2分钟前
量子星尘发布了新的文献求助30
2分钟前
科研狗完成签到 ,获得积分10
2分钟前
嘉嘉完成签到 ,获得积分10
2分钟前
槿裡完成签到 ,获得积分10
2分钟前
量子星尘发布了新的文献求助10
3分钟前
3分钟前
meng发布了新的文献求助10
3分钟前
zzgpku完成签到,获得积分0
3分钟前
zhdjj完成签到 ,获得积分10
3分钟前
胖胖橘完成签到 ,获得积分10
3分钟前
meng完成签到,获得积分10
3分钟前
青山完成签到 ,获得积分10
3分钟前
痞子王完成签到 ,获得积分10
3分钟前
量子星尘发布了新的文献求助10
3分钟前
风华正茂完成签到,获得积分10
3分钟前
眯眯眼的安雁完成签到 ,获得积分10
3分钟前
高分求助中
【提示信息,请勿应助】请使用合适的网盘上传文件 10000
Continuum Thermodynamics and Material Modelling 2000
Green Star Japan: Esperanto and the International Language Question, 1880–1945 800
Sentimental Republic: Chinese Intellectuals and the Maoist Past 800
The Martian climate revisited: atmosphere and environment of a desert planet 800
Learning to Listen, Listening to Learn 520
Plasmonics 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3868033
求助须知:如何正确求助?哪些是违规求助? 3410297
关于积分的说明 10667062
捐赠科研通 3134490
什么是DOI,文献DOI怎么找? 1729130
邀请新用户注册赠送积分活动 833184
科研通“疑难数据库(出版商)”最低求助积分说明 780620