亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Estimation of actual evapotranspiration: A novel hybrid method based on remote sensing and artificial intelligence

自适应神经模糊推理系统 蒸散量 均方误差 归一化差异植被指数 环境科学 分水岭 植被(病理学) 数学 统计 叶面积指数 水文学(农业) 遥感 模糊逻辑 计算机科学 机器学习 生态学 人工智能 模糊控制系统 地理 工程类 生物 医学 岩土工程 病理
作者
Fatemeh Hadadi,Roozbeh Moazenzadeh,Babak Mohammadi
出处
期刊:Journal of Hydrology [Elsevier]
卷期号:609: 127774-127774 被引量:38
标识
DOI:10.1016/j.jhydrol.2022.127774
摘要

Actual evapotranspiration (AET) is one of the decisive factors controlling the water balance at the catchment level, particularly in arid and semi-arid regions, but measured data for which are generally unavailable. In this study, performance of a base artificial intelligence (AI) model, adaptive neuro-fuzzy inference system (ANFIS), and its hybrids with two bio-inspired optimization algorithms, namely shuffled frog leaping algorithm (SFLA) and grey wolf optimization (GWO), in estimating monthly AET was evaluated over 2001–2010 across Neishaboor watershed in Iran. The inputs of these models were categorized into three groups including meteorological, remotely sensed, and hybrid-based predictors, and defined in the form of 8 different scenarios. Net radiation (Rn), land surface temperature (LST), normalized difference vegetation index (NDVI), soil adjusted vegetation index (SAVI), and soil wetness deficit index (SWDI) were the remotely sensed predictors, computed using MODIS satellite images on the monthly scale for the study area. The results showed that the SWDI predictor has played a significant role in improving the accuracy of AET estimation, with the highest error reduction (12.5, 17 and 26.5% for ANFIS, ANFIS-SFLA, and ANFIS-GWO, respectively) obtained under scenarios including SWDI compared to corresponding scenarios excluding this predictor. In testing set, the three aforementioned models exhibited their best performance under Scenario 8 (RMSE = 11.93, NSE = 0.69, RRMSE = 0.37), Scenario 4 (RMSE = 11.06, NSE = 0.74, RRMSE = 0.37) and Scenario 4 (RMSE = 10.9, NSE = 0.76, RRMSE = 0.36), respectively. Coupling the SFLA and GWO optimization algorithms to the base model improved the accuracy of AET estimation, with the maximum error reduction for the two algorithms being about 12% (Scenarios 2 and 4) and 14% (Scenario 4), respectively. Examining the performance of the best scenarios of the three models in three intervals including the first, middle, and last third of measured AET values showed that all models were the most accurate in the first third interval. The results also indicated that all models have had higher accuracies in the first and middle third intervals of under-estimation set and the last interval of over-estimation set.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ding应助dajiejie采纳,获得10
7秒前
情怀应助科研通管家采纳,获得30
25秒前
Lucas应助科研通管家采纳,获得10
25秒前
浮游应助科研通管家采纳,获得10
25秒前
典希子完成签到 ,获得积分10
26秒前
传奇3应助Zyc采纳,获得10
42秒前
汉堡包应助xl采纳,获得10
51秒前
Mika发布了新的文献求助20
1分钟前
光合作用完成签到,获得积分10
1分钟前
爱科研的小凡完成签到,获得积分10
1分钟前
务实书包完成签到,获得积分10
1分钟前
Orange应助儒雅的城采纳,获得20
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
Zyc发布了新的文献求助10
1分钟前
zgjc发布了新的文献求助10
1分钟前
1分钟前
1分钟前
xl完成签到,获得积分10
1分钟前
柳叶刀Z完成签到 ,获得积分10
1分钟前
Tushar发布了新的文献求助10
1分钟前
气球好饿完成签到 ,获得积分10
1分钟前
xl发布了新的文献求助10
1分钟前
1分钟前
XMH完成签到,获得积分20
2分钟前
2分钟前
wswswsws完成签到,获得积分10
2分钟前
XMH发布了新的文献求助10
2分钟前
Tushar完成签到,获得积分10
2分钟前
吃点红糖馒头完成签到 ,获得积分10
2分钟前
深情安青应助学者宫Sir采纳,获得10
2分钟前
uikymh完成签到 ,获得积分0
2分钟前
Jasper应助糊涂的小王采纳,获得10
2分钟前
wonder041完成签到,获得积分10
2分钟前
完美世界应助学者宫Sir采纳,获得10
2分钟前
2分钟前
领导范儿应助科研通管家采纳,获得10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Holistic Discourse Analysis 600
Routledge Handbook on Spaces of Mental Health and Wellbeing 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
Vertebrate Palaeontology, 5th Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5323651
求助须知:如何正确求助?哪些是违规求助? 4464878
关于积分的说明 13893694
捐赠科研通 4356431
什么是DOI,文献DOI怎么找? 2392828
邀请新用户注册赠送积分活动 1386336
关于科研通互助平台的介绍 1356405