Recognizing fish behavior in aquaculture with graph convolutional network

水产养殖 渔业 图形 生物 计算机科学 环境科学 理论计算机科学
作者
Jinze Huang,Xiaoning Yu,Xueweijie Chen,Dong An,Yangen Zhou,Yaoguang Wei
出处
期刊:Aquacultural Engineering [Elsevier BV]
卷期号:98: 102246-102246 被引量:14
标识
DOI:10.1016/j.aquaeng.2022.102246
摘要

Analyzing fish shoal behaviors is one of the concerned problems for scientists who study fish welfare and stress. However, most shoal behavior exploring methods with manual parameters are subjective and not widely available in various conditions. Therefore, this study introduced graph technology, built 29,505 shoal behavioral graphs and presented a graph neural network for analyzing four shoal behaviors (normal, resting, abnormal, and circular state) by calculating the multiple swimming indexes and swimming posture from videos. In the proposed model, motion characteristics of the shoal and swimming posture of individuals in shoal were utilized to construct a shoal graph, and then the graph convolution network (GCN) model was trained and tested. Results indicated that the model could effectively improve the identification rate of fish shoals’ special behaviors, with an overall accuracy of 97.3% under the ideal condition, 92.3% for the practicable scheme that track fish by machine learning technology, compared with the artificial neural network, modified kinetic energy model and simulation feature point selection model, the accuracy of special behaviors increased by 1.6%, 57.7%, and 34.0%, respectively. Besides, the main factors that affected the accuracy of the analyzer were explored. The analyzer is sensitive to (1) the precision of tracking results, (2) edge connection in the graph and (3) features of the model’s input. In addition, by interpreting the principle of the GCN model, it assigns greater weights for dispersion in normal swimming state recognition, and swimming postures are the most significant indicators to determine whether a shoal is in an abnormal state or not. In summary, the model can be used to help researchers explore the basal behavioral mechanisms in aquaculture.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
开放鸿涛完成签到,获得积分10
刚刚
1秒前
科研通AI5应助美满文龙采纳,获得10
1秒前
卡卡西应助yaoyao123456采纳,获得10
2秒前
清辉夜凝发布了新的文献求助10
3秒前
scq完成签到 ,获得积分10
4秒前
bkagyin应助老雪半糖加冰采纳,获得10
5秒前
5秒前
5秒前
6秒前
6秒前
6秒前
6秒前
青柠完成签到,获得积分10
6秒前
Owen应助繁荣的从雪采纳,获得10
6秒前
7秒前
小二郎应助唠叨的月光采纳,获得10
7秒前
7秒前
zyt完成签到 ,获得积分20
7秒前
8秒前
zho发布了新的文献求助10
8秒前
9秒前
传奇3应助佐zzz采纳,获得10
9秒前
丘比特应助aam采纳,获得10
9秒前
gyh发布了新的文献求助10
9秒前
好好学习完成签到,获得积分10
9秒前
文献发布了新的文献求助10
10秒前
259185发布了新的文献求助10
10秒前
10秒前
美满的泥猴桃完成签到,获得积分10
11秒前
11秒前
XUN发布了新的文献求助10
11秒前
HEAUBOOK举报lowry求助涉嫌违规
11秒前
cici发布了新的文献求助10
11秒前
Ava应助网再快点采纳,获得10
12秒前
尔风发布了新的文献求助10
12秒前
忧郁难胜发布了新的文献求助10
13秒前
13秒前
共享精神应助111采纳,获得10
13秒前
13秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Technologies supporting mass customization of apparel: A pilot project 600
Nonrandom distribution of the endogenous retroviral regulatory elements HERV-K LTR on human chromosome 22 500
Hydropower Nation: Dams, Energy, and Political Changes in Twentieth-Century China 500
Introduction to Strong Mixing Conditions Volumes 1-3 500
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
Microfluidic Cell Culture Systems 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3805892
求助须知:如何正确求助?哪些是违规求助? 3350749
关于积分的说明 10350923
捐赠科研通 3066628
什么是DOI,文献DOI怎么找? 1684048
邀请新用户注册赠送积分活动 809244
科研通“疑难数据库(出版商)”最低求助积分说明 765425