无人机
涡轮机
残差神经网络
跳跃式监视
计算机科学
风力发电
海洋工程
环境科学
最小边界框
风速
工作(物理)
遥感
人工智能
深度学习
航空航天工程
气象学
地质学
工程类
电气工程
物理
机械工程
图像(数学)
遗传学
生物
作者
Ashley A. Foster,Oscar Best,Mario Gianni,Asiya Khan,Keri Collins,Sanjay Sharma
标识
DOI:10.1109/ivmsp54334.2022.9816220
摘要
In this work a new publicly available dataset of wind turbine surface damage images is presented. Moreover, a comparison between ResNet-101 Faster R-CNN and YOLOv5 for Wind Turbine Surface Damage Detection is analysed and performance of these models on drone footage with active turbines is also discussed. Results show that YOLOv5 outperforms ResNet-101 Faster R-CNN in predicting the bounding box coordinates of the damaged surfaces of the wind turbines. However, unlike YOLOv5, ResNet-101 Faster R-CNN estimates an entire instance of damage as a single prediction.
科研通智能强力驱动
Strongly Powered by AbleSci AI