青贮饲料
干物质
发酵
植物乳杆菌
饲料
化学
瘤胃
总混合日粮
食品科学
农学
中性洗涤纤维
渣
乳酸菌
动物科学
生物
乳酸
冰崩解
细菌
怀孕
哺乳期
遗传学
作者
Xia Zhang,Wencan Ke,Zitong Ding,Dongmei Xu,Musen Wang,Menyan Chen,Xusheng Guo
标识
DOI:10.1016/j.jenvman.2022.114637
摘要
This study was conducted to investigate the influence of feruloyl esterase-producing Lactobacillus plantarum A1 (Lp A1) and grape pomace (GP) alone, or in combination (LG) on ensiling characteristics and bacterial community, in vitro ruminal fermentation, methane (CH4) emission, and the microbiota of ensiled alfalfa. Alfalfa at 42% dry matter (DM) was treated in a 2 × 2 factorial design: with the application of Lp A1 at 0 (control) or 1 × 106 cfu/g of fresh forage, and GP at 0 or 5% of fresh forage. After 60 d of ensiling, a decrease in nonprotein nitrogen (NPN) was observed in GP treated silage. Lp A1 inoculated silage had a lower fiber content than silages without Lp A1. The lowest NPN was found in silage treated with LG, and an obvious increase in the relative abundance of Lactobacillus paracasei was detected in silages treated with Lp A1 and LG, respectively. In vitro ruminal experiments indicated that, although the application of GP deceased ruminal total gas, CH4 production, nitrogen degradation and the number of methanogenic archaea in alfalfa silage, it also reduced silage DM digestibility. In contrast, inoculation with Lp A1 not only increased DM digestibility and populations of ruminal Ruminococcus flavefaciens and fungi, but also improved ruminal total gas and CH4 production. As expected, LG treatment decreased alfalfa silage ruminal total gas and CH4 production relative to Lp A1 treatment alone, and increased silage DM digestibility compared with GP treated silage. In conclusion, the application of LG before ensiling alfalfa, balanced silage proteolysis, feed digestibility, and CH4 emission, and could be a promising strategy for using food industry by-products to produce a nutritional and environmentally-friendly legume silage that will mitigate N and greenhouse gas emissions from ruminants.
科研通智能强力驱动
Strongly Powered by AbleSci AI