LDS-YOLO: A lightweight small object detection method for dead trees from shelter forest

计算机科学 目标检测 人工智能 卷积(计算机科学) 棱锥(几何) 自然性 模式识别(心理学) 联营 对象(语法) 数据挖掘 遥感 地理 数学 人工神经网络 物理 几何学 量子力学
作者
Xuewen Wang,Qingzhan Zhao,Ping Jiang,Yuchen Zheng,Limengzi Yuan,Panli Yuan
出处
期刊:Computers and Electronics in Agriculture [Elsevier BV]
卷期号:198: 107035-107035 被引量:60
标识
DOI:10.1016/j.compag.2022.107035
摘要

The detection and location of dead trees are extremely important for the management and estimating naturalness of the forests, and timely replanting of dead trees can effectively resist natural disasters and maintain the stability of the ecosystem. Dead trees have the characteristics of small targets and inconspicuous detail information, which leads to the problem of difficult identification. In this paper, we propose a novel lightweight architecture for small objection detection based on the YOLO framework, named LDS-YOLO. Specifically, a novel feature extraction module is proposed, it reuses the features from previous layers for the purpose of dense connectivity and reduced dependence on the dataset. Then, for Spatial pyramid pooling (SPP) with the introduction of SoftPool method for retaining detailed information about the object to ensure that small targets are not missed. In the meantime, a depth-wise separable convolution with a small number of parameters is used instead of the traditional convolution to reduce the number of model parameters. We evaluate the proposed method on our self-made dataset based UAV captured images. The experimental results demonstrate that the LDS-YOLO architecture performs well in comparison with the state-of-the-art models, with AP of 89.11% and parameter size of 7.6 MB, and can be used for rapid detection of dead trees in shelter forests, which provides a scientific theoretical basis for forestry management of Three North shelter Forest.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CipherSage应助哈哈哈采纳,获得10
刚刚
汉堡包应助科研通管家采纳,获得10
2秒前
Orange应助科研通管家采纳,获得10
2秒前
CodeCraft应助科研通管家采纳,获得10
2秒前
SciGPT应助科研通管家采纳,获得10
2秒前
李健应助科研通管家采纳,获得10
2秒前
CipherSage应助科研通管家采纳,获得10
2秒前
英俊的铭应助科研通管家采纳,获得10
2秒前
3秒前
Darius应助ysjzs采纳,获得20
4秒前
4秒前
4秒前
4秒前
小二郎应助梅子采纳,获得10
5秒前
彧辰完成签到 ,获得积分10
6秒前
7秒前
xiuxiuxiu完成签到,获得积分20
8秒前
10秒前
研友_VZG7GZ应助spc采纳,获得10
10秒前
潇潇鱼发布了新的文献求助10
11秒前
AHA发布了新的文献求助20
11秒前
香蕉觅云应助1234567采纳,获得10
11秒前
Shadow完成签到 ,获得积分10
12秒前
哈哈哈发布了新的文献求助10
12秒前
14秒前
SUR完成签到,获得积分0
14秒前
14秒前
陶醉的夜绿完成签到,获得积分20
16秒前
隐形曼青应助正直的友容采纳,获得10
16秒前
高贵以珊完成签到,获得积分10
18秒前
21秒前
Hello应助梅子采纳,获得10
21秒前
clairr完成签到,获得积分10
21秒前
21秒前
蔓越莓蛋糕应助zhoumaoyuan采纳,获得10
22秒前
ekswai发布了新的文献求助30
22秒前
石勒苏益格完成签到,获得积分10
22秒前
overa_发布了新的文献求助10
23秒前
SHAO应助陈奥采纳,获得10
24秒前
24秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 1370
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 1000
Statistical Analysis of fMRI Data, second edition (Mit Press) 2nd ed 500
Lidocaine regional block in the treatment of acute gouty arthritis of the foot 400
Ecological and Human Health Impacts of Contaminated Food and Environments 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 360
International Relations at LSE: A History of 75 Years 308
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3933597
求助须知:如何正确求助?哪些是违规求助? 3478717
关于积分的说明 11002797
捐赠科研通 3208776
什么是DOI,文献DOI怎么找? 1773270
邀请新用户注册赠送积分活动 860245
科研通“疑难数据库(出版商)”最低求助积分说明 797626