Automatic Grading Assessments for Knee MRI Cartilage Defects via Self-ensembling Semi-supervised Learning with Dual-Consistency

计算机科学 一致性(知识库) 人工智能 分级(工程) 机器学习 骨关节炎 软骨 膝关节 模式识别(心理学) 医学 外科 工程类 病理 解剖 土木工程 替代医学
作者
Jiayu Huo,Xi Ouyang,Liping Si,Kai Xuan,Sheng Wang,Weiwu Yao,Ying Liu,Jia Xu,Dahong Qian,Zhong Xue,Qian Wang,Dinggang Shen,Lichi Zhang
出处
期刊:Medical Image Analysis [Elsevier BV]
卷期号:80: 102508-102508 被引量:16
标识
DOI:10.1016/j.media.2022.102508
摘要

Knee cartilage defects caused by osteoarthritis are major musculoskeletal disorders, leading to joint necrosis or even disability if not intervened at early stage. Deep learning has demonstrated its effectiveness in computer-aided diagnosis, but it is time-consuming to prepare a large set of well-annotated data by experienced radiologists for model training. In this paper, we propose a semi-supervised framework to effectively use unlabeled data for better evaluation of knee cartilage defect grading. Our framework is developed based on the widely-used mean-teacher classification model, by designing a novel dual-consistency strategy to boost the consistency between the teacher and student models. The main contributions are three-fold: (1) We define an attention loss function to make the network focus on the cartilage regions, which can both achieve accurate attention masks and boost classification performance simultaneously; (2) Besides enforcing the consistency of classification results, we further design a novel attention consistency mechanism to ensure the focusing of the student and teacher networks on the same defect regions; (3) We introduce an aggregation approach to ensemble the slice-level classification outcomes for deriving the final subject-level diagnosis. Experimental results show that our proposed method can significantly improve both classification and localization performances of knee cartilage defects. Our code is available on https://github.com/King-HAW/DC-MT.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
小马甲应助快乐的小乌龟采纳,获得10
1秒前
圆彰七大发布了新的文献求助10
1秒前
橘子完成签到,获得积分10
1秒前
1秒前
简单的一手完成签到,获得积分20
2秒前
问雁完成签到,获得积分10
3秒前
搜集达人应助yukie采纳,获得10
3秒前
袁鹏飞完成签到,获得积分10
4秒前
娟儿发布了新的文献求助10
5秒前
ruirui发布了新的文献求助10
5秒前
积极的汽车完成签到,获得积分10
5秒前
搜集达人应助dreamer采纳,获得10
5秒前
5秒前
hsyh发布了新的文献求助30
6秒前
希望天下0贩的0应助意意采纳,获得10
7秒前
蘅大爷发布了新的文献求助10
7秒前
9秒前
虫虫完成签到,获得积分10
10秒前
10秒前
gy完成签到,获得积分20
11秒前
传奇3应助瞿海蓝采纳,获得10
11秒前
研友_VZG7GZ应助乔123采纳,获得10
12秒前
hjyylab应助娟儿采纳,获得10
12秒前
13秒前
14秒前
心空完成签到,获得积分10
14秒前
14秒前
zhangman完成签到,获得积分20
15秒前
15秒前
简单喀秋莎完成签到,获得积分10
15秒前
我是zpb发布了新的文献求助10
15秒前
烟花应助江脸脸采纳,获得10
15秒前
19秒前
方可发布了新的文献求助10
19秒前
20秒前
由富发布了新的文献求助10
20秒前
高震博完成签到 ,获得积分10
21秒前
万能图书馆应助mou采纳,获得10
22秒前
温暖小松鼠完成签到 ,获得积分10
22秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Images that translate 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3842096
求助须知:如何正确求助?哪些是违规求助? 3384295
关于积分的说明 10533721
捐赠科研通 3104627
什么是DOI,文献DOI怎么找? 1709760
邀请新用户注册赠送积分活动 823319
科研通“疑难数据库(出版商)”最低求助积分说明 773993