Development of an artificial neural network model to predict waste marble powder demand in eco‐efficient self‐compacting concrete

人工神经网络 生产(经济) 过程(计算) 抗压强度 计算机科学 工程类 人工智能 材料科学 操作系统 宏观经济学 复合材料 经济
作者
Merve Açıkgenç Ulaş
出处
期刊:Structural Concrete [Wiley]
卷期号:24 (2): 2009-2022 被引量:16
标识
DOI:10.1002/suco.202200043
摘要

Abstract The marble industry produces large amount of waste at almost every stage of marble processing. This waste is always uncontrollably discharged into open areas. Therefore, the consumption of Waste Marble Powder (WMP) in concrete is very important and will provide both an economic gain for concrete industries and an opportunity to achieve eco‐efficient concrete production. Self‐Compacting Concrete (SCC) is mostly preferred concrete type which uses the WMP as powdered material. Thus, to increase WMP usage in the production of eco‐efficient SCC, it is aimed in this study to develop a model that can predict WMP demand. To develop this model, Artificial Neural Network (ANN), an artificial intelligence method, was preferred. An ANN model was developed using a comprehensive dataset that included eco‐efficient SCC mixture compositions, workability measurements, and compressive strengths. The ANN model with seven inputs and one output as WMP was successfully trained and managed to produce the correct outputs to both validation and test datasets. Mix design of SCC with aimed properties can be a long process compared to conventional concrete. The proposed ANN model could reduce time loss in the production process. ANN's success is expected to facilitate the production of eco‐efficient SCC with WMP.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
plaaf发布了新的文献求助10
刚刚
刚刚
1秒前
SciGPT应助dailj采纳,获得10
1秒前
木香007发布了新的文献求助30
1秒前
了晨完成签到 ,获得积分10
1秒前
1秒前
张涛发布了新的文献求助10
1秒前
1秒前
2秒前
SciGPT应助火星上的夏青采纳,获得10
2秒前
NexusExplorer应助还魂草采纳,获得10
2秒前
宝宝巴士发布了新的文献求助10
2秒前
英姑应助冷静的台灯采纳,获得10
2秒前
Yang发布了新的文献求助10
2秒前
3秒前
3秒前
bhjSIde完成签到,获得积分10
3秒前
勤奋的冥王星完成签到,获得积分10
4秒前
脑洞疼应助唐红云采纳,获得10
4秒前
4秒前
彭于晏应助hy采纳,获得10
4秒前
youxiaotong发布了新的文献求助10
4秒前
机灵的仙人掌完成签到,获得积分10
5秒前
LL完成签到,获得积分10
5秒前
红豆完成签到,获得积分10
6秒前
66666发布了新的文献求助10
6秒前
6秒前
7秒前
深情靳完成签到,获得积分10
7秒前
香蕉觅云应助yangkang采纳,获得20
7秒前
ChenYX发布了新的文献求助10
8秒前
酷波er应助plaaf采纳,获得10
8秒前
8秒前
8秒前
9秒前
神奇宝贝发布了新的文献求助10
9秒前
FashionBoy应助默默的觅双采纳,获得10
9秒前
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
Pediatric Nutrition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5552270
求助须知:如何正确求助?哪些是违规求助? 4637012
关于积分的说明 14647248
捐赠科研通 4578939
什么是DOI,文献DOI怎么找? 2511174
邀请新用户注册赠送积分活动 1486363
关于科研通互助平台的介绍 1457547