Vessel-GAN: Angiographic reconstructions from myocardial CT perfusion with explainable generative adversarial networks

计算机科学 血管造影 人工智能 图像质量 翻译(生物学) 放射科 发电机(电路理论) 计算机视觉 医学 图像(数学) 生物化学 化学 功率(物理) 物理 量子力学 信使核糖核酸 基因
作者
Chulin Wu,Heye Zhang,Jiaqi Chen,Zhifan Gao,Pengfei Zhang,Khan Muhammad,Javier Del Ser
出处
期刊:Future Generation Computer Systems [Elsevier BV]
卷期号:130: 128-139 被引量:25
标识
DOI:10.1016/j.future.2021.12.007
摘要

Dynamic CT angiography derived from CT perfusion data can obviate a separate coronary CT angiography and the use of ionizing radiation and contrast agent, thereby enhancing patient safety. However, the image quality of dynamic CT angiography is inferior to standard CT angiography images in many studies. This paper proposes an explainable generative adversarial network named vessel-GAN, which resorts to explainable knowledge-based artificial intelligence to perform image translation with increased trustworthiness. Specifically, we design a loss term to better learn the representations of blood vessels in CT angiography images. The loss term based on expert knowledge guides the generator to focus its training on the important features predicted by the discriminator. Additionally, we propose a generator architecture that effectively fuses spatio-temporal representations and further enhances temporal consistency, thereby improving the quality of the generated CT angiography images. The experiment is conducted on a dataset consisting of 232 patients with suspected coronary artery stenosis. Experimental results show that the PSNR value of vessel-GAN is 28.32 dB, SSIM value is 0.91 and MAE value is 47.36. To validate the effectiveness of the proposed synthesis method, we compare that with other image translation frameworks and GAN-based methods. Compared to other image translation methods, the proposed method vessel-GAN can generate more clearly visible blood vessels from source perfusion images. The CTA images generated by vessel-GAN are closer to the real CTA due to the use of adversarial learning. Compared with other GAN-based methods, vessel-GAN can produce sharper and more homogeneous outputs, including realistic vascular structures. The experiment demonstrates that the explainable generative adversarial network has superior performance for it can better control how models learn. Overall, the CT angiography images generated by vessel-GAN can potentially replace a separate standard CT angiography, allowing the possibility of “one-stop” cardiac examination for high-risk coronary artery disease patients who need assessment of myocardial ischemia.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
姜茶完成签到 ,获得积分10
1秒前
2秒前
888发布了新的文献求助10
4秒前
5秒前
搞怪的靖雁完成签到,获得积分10
8秒前
focco发布了新的文献求助10
8秒前
9秒前
10秒前
allzzwell完成签到 ,获得积分10
11秒前
打打应助大成子采纳,获得10
13秒前
你hao发布了新的文献求助10
14秒前
xiaohuang发布了新的文献求助10
14秒前
16秒前
星辰大海应助森林有木采纳,获得10
17秒前
蛋挞完成签到 ,获得积分10
20秒前
天天快乐应助zhh采纳,获得20
20秒前
23秒前
xiaohuang完成签到,获得积分10
24秒前
weny完成签到,获得积分10
26秒前
科研通AI2S应助科研通管家采纳,获得10
27秒前
在水一方应助科研通管家采纳,获得10
27秒前
英姑应助科研通管家采纳,获得10
28秒前
阔达紫青应助科研通管家采纳,获得10
28秒前
Jasper应助科研通管家采纳,获得10
28秒前
顾矜应助科研通管家采纳,获得10
28秒前
Orange应助科研通管家采纳,获得10
28秒前
大成子发布了新的文献求助10
28秒前
李爱国应助科研通管家采纳,获得10
28秒前
搜集达人应助科研通管家采纳,获得10
28秒前
华仔应助科研通管家采纳,获得10
28秒前
爆米花应助科研通管家采纳,获得10
28秒前
香蕉觅云应助科研通管家采纳,获得10
28秒前
29秒前
ding应助科研通管家采纳,获得10
29秒前
Lucas应助科研通管家采纳,获得10
29秒前
29秒前
领导范儿应助科研通管家采纳,获得10
29秒前
科研通AI5应助科研通管家采纳,获得10
29秒前
xs小仙女应助科研通管家采纳,获得10
29秒前
三里墩头应助科研通管家采纳,获得10
29秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778226
求助须知:如何正确求助?哪些是违规求助? 3323870
关于积分的说明 10216390
捐赠科研通 3039102
什么是DOI,文献DOI怎么找? 1667782
邀请新用户注册赠送积分活动 798389
科研通“疑难数据库(出版商)”最低求助积分说明 758366