已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

NutriNet: A Deep Learning Food and Drink Image Recognition System for Dietary Assessment

人工智能 深度学习 卷积神经网络 计算机科学 模式识别(心理学) 图像处理 机器学习 计算机视觉 图像(数学)
作者
Simon Mezgec,Barbara Koroušić Seljak
出处
期刊:Nutrients [Multidisciplinary Digital Publishing Institute]
卷期号:9 (7): 657-657 被引量:234
标识
DOI:10.3390/nu9070657
摘要

Automatic food image recognition systems are alleviating the process of food-intake estimation and dietary assessment. However, due to the nature of food images, their recognition is a particularly challenging task, which is why traditional approaches in the field have achieved a low classification accuracy. Deep neural networks have outperformed such solutions, and we present a novel approach to the problem of food and drink image detection and recognition that uses a newly-defined deep convolutional neural network architecture, called NutriNet. This architecture was tuned on a recognition dataset containing 225,953 512 × 512 pixel images of 520 different food and drink items from a broad spectrum of food groups, on which we achieved a classification accuracy of 86.72%, along with an accuracy of 94.47% on a detection dataset containing 130,517 images. We also performed a real-world test on a dataset of self-acquired images, combined with images from Parkinson’s disease patients, all taken using a smartphone camera, achieving a top-five accuracy of 55%, which is an encouraging result for real-world images. Additionally, we tested NutriNet on the University of Milano-Bicocca 2016 (UNIMIB2016) food image dataset, on which we improved upon the provided baseline recognition result. An online training component was implemented to continually fine-tune the food and drink recognition model on new images. The model is being used in practice as part of a mobile app for the dietary assessment of Parkinson’s disease patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
强健的成协关注了科研通微信公众号
1秒前
2秒前
RainyBFF完成签到 ,获得积分10
2秒前
2秒前
Jiangzhibing发布了新的文献求助10
3秒前
zzz完成签到 ,获得积分10
3秒前
4秒前
5秒前
胡胡发布了新的文献求助30
5秒前
ljh发布了新的文献求助10
5秒前
Bell完成签到,获得积分20
6秒前
RonK完成签到,获得积分20
7秒前
8秒前
艾伦.耶格尔完成签到,获得积分10
9秒前
Evan完成签到 ,获得积分10
9秒前
烟消云散发布了新的文献求助10
10秒前
科研通AI5应助LL采纳,获得10
10秒前
夜行完成签到,获得积分10
11秒前
13秒前
13秒前
14秒前
Ava应助我是闪电采纳,获得10
15秒前
17秒前
19秒前
20秒前
20秒前
cx完成签到 ,获得积分10
21秒前
22秒前
22秒前
23秒前
小小铱发布了新的文献求助10
24秒前
24秒前
酷炫笑珊完成签到,获得积分10
24秒前
25秒前
ss发布了新的文献求助10
26秒前
黎夜发布了新的文献求助10
28秒前
张文博发布了新的文献求助10
28秒前
科研通AI5应助HESOYAM采纳,获得30
29秒前
Mark完成签到 ,获得积分10
30秒前
30秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
Thomas Hobbes' Mechanical Conception of Nature 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5090007
求助须知:如何正确求助?哪些是违规求助? 4304665
关于积分的说明 13414601
捐赠科研通 4130315
什么是DOI,文献DOI怎么找? 2262199
邀请新用户注册赠送积分活动 1266136
关于科研通互助平台的介绍 1200822