State of Health Estimation of Lithium-Ion Batteries Using Capacity Fade and Internal Resistance Growth Models

预言 淡出 内阻 健康状况 降级(电信) 颗粒过滤器 电池(电) 锂离子电池 可靠性工程 计算机科学 工程类 电子工程 卡尔曼滤波器 功率(物理) 人工智能 物理 操作系统 量子力学
作者
Arun K. Guha,Amit Patra
出处
期刊:IEEE Transactions on Transportation Electrification 卷期号:4 (1): 135-146 被引量:210
标识
DOI:10.1109/tte.2017.2776558
摘要

In this paper, a method for the estimation of remaining useful lifetime (RUL) of lithium-ion batteries has been presented based on a combination of its capacity degradation and internal resistance growth models. The capacity degradation model is developed recently based on battery capacity test data. An empirical model for internal resistance growth is also developed based on electrochemical-impedance spectroscopy (EIS) test data. The obtained models are used in a particle filtering (PF) framework for making end-of-lifetime (EOL) predictions at various phases of its lifecycle. Further, the above two models were fused together to obtain a new degradation model for RUL estimation. It has been observed that the fused degradation model has improved the standard deviation of prediction as compared to the individual degradation models by maintaining satisfactory prediction accuracy. The effect of parameter variations on the performance of the PF algorithm has also been studied. Finally, the predictions are validated with experimental data. From the results it can be observed that with the availability of longer volume of data, the prediction accuracy gradually improves. The prognostics framework proposed in this paper provides a structured way for monitoring the state of health (SoH) of a battery.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
zeyu关注了科研通微信公众号
2秒前
2秒前
无花果应助ping采纳,获得10
3秒前
傻子发布了新的文献求助10
4秒前
旺德福发布了新的文献求助10
5秒前
陆小齐完成签到,获得积分10
7秒前
wanci应助徐慕源采纳,获得10
7秒前
7秒前
肯德基没有黄焖鸡完成签到 ,获得积分10
7秒前
Zoo应助yorkin采纳,获得30
7秒前
8秒前
冷静的之卉完成签到,获得积分10
8秒前
充电宝应助科研孙采纳,获得10
9秒前
李斌完成签到 ,获得积分10
10秒前
科目三应助Lz采纳,获得10
10秒前
10秒前
11秒前
11秒前
splatoon发布了新的文献求助20
11秒前
11秒前
11秒前
完美世界应助科研通管家采纳,获得10
12秒前
Wind应助科研通管家采纳,获得10
12秒前
CodeCraft应助科研通管家采纳,获得10
12秒前
科研通AI2S应助科研通管家采纳,获得10
12秒前
Hello应助科研通管家采纳,获得10
12秒前
科研通AI2S应助科研通管家采纳,获得10
12秒前
乐乐应助科研通管家采纳,获得10
12秒前
科研通AI2S应助科研通管家采纳,获得10
12秒前
所所应助科研通管家采纳,获得10
12秒前
大模型应助科研通管家采纳,获得10
12秒前
12秒前
共享精神应助科研通管家采纳,获得10
12秒前
小蘑菇应助科研通管家采纳,获得10
13秒前
orixero应助Clover采纳,获得10
13秒前
13秒前
SALI完成签到,获得积分10
13秒前
王硕完成签到,获得积分10
14秒前
目土土发布了新的文献求助10
14秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Semantics for Latin: An Introduction 1099
Biology of the Indian Stingless Bee: Tetragonula iridipennis Smith 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 740
镇江南郊八公洞林区鸟类生态位研究 500
Thermal Quadrupoles: Solving the Heat Equation through Integral Transforms 500
Corpus Linguistics for Language Learning Research 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4139042
求助须知:如何正确求助?哪些是违规求助? 3675836
关于积分的说明 11619628
捐赠科研通 3370051
什么是DOI,文献DOI怎么找? 1851224
邀请新用户注册赠送积分活动 914417
科研通“疑难数据库(出版商)”最低求助积分说明 829239