全基因组关联研究
多效性
遗传关联
联想(心理学)
表型
多元统计
生物
汇总统计
计算生物学
统计能力
统计遗传学
遗传学
基因
单核苷酸多态性
基因组
统计
基因组学
心理学
基因型
数学
心理治疗师
作者
Xiaoyin Li,Xiaofeng Zhu
标识
DOI:10.1007/978-1-4939-7274-6_22
摘要
For over a decade, genome-wide association studies (GWAS) have been a major tool for detecting genetic variants underlying complex traits. Recent studies have demonstrated that the same variant or gene can be associated with multiple traits, and such associations are termed cross-phenotype (CP) associations. CP association analysis can improve statistical power by searching for variants that contribute to multiple traits, which is often relevant to pleiotropy. In this chapter, we discuss existing statistical methods for analyzing association between a single marker and multivariate phenotypes, we introduce a general approach, CPASSOC, to detect the CP associations, and explain how to conduct the analysis in practice.
科研通智能强力驱动
Strongly Powered by AbleSci AI