亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

The Effect of Lifsi Salt Concentration and Electrolyte Additives on the Performance of Silicon Anodes for Li-Ion Batteries

电解质 阳极 碳酸乙烯酯 锂(药物) 无机化学 材料科学 盐(化学) 电导率 电极 化学工程 化学 有机化学 冶金 物理化学 医学 工程类 内分泌学
作者
Nils Runar Mulder,Karina Asheim,Marius Uv Nagell,Jan Petter Mæhlen,Ann Mari Svensson
出处
期刊:Meeting abstracts 卷期号:MA2019-03 (2): 183-183
标识
DOI:10.1149/ma2019-03/2/183
摘要

Silicon is considered a promising anode material for Li-ion batteries due to the very high theoretical capacity (ca 3600 mAh/g). In fact, commercial batteries today might have up to 5-10 wt% silicon added to the anode. The extensive expansion of the material is a challenge for the mechanical integrity of the electrode, and leads to continuous exposure of fresh surface of silicon to the electrolyte and thereby continuous formation of solid electrolyte interphase (SEI). Thus, the choice of electrolyte, i.e. an electrolyte with good passivating properties, is crucial for the performance of the anode. Common additives for electrolytes to be used in combination with silicon anodes, are fluoroethylene carbonate (FEC) and vinylene carbonate (VC), both known to reduce prior to the solvent (i.e. ethylene carbonate). Furthermore, replacing the lithium hexafluorophosphate (LiPF 6 ) salt, known to decompose to PF 5 , which again form HF upon reaction with trace amounts of H 2 O, could improve the performance. More stable salts are particularly advantageous for silicon electrodes, as HF might attack the native surface oxide (SiO 2 ) [1]. Salts known to be more stable are lithium bis(trifluoromethanesulfonylimide) (LiTFSI) and lithium bis(fluorosulfonyl)imide (LiFSI), and silicon anodes have been shown to perform better with electrolytes containing LiFSI [2]. These salts are furthermore highly soluble in a wide number of solvents, and have therefore frequently been applied in concentrated electrolytes, which are showing great promise as Li-ion battery electrolytes [3]. In spite of increased viscosity and reduced conductivity, a significant change of interfacial reactions at high concentrations might outweigh these drawbacks. Improved performance of Silicon electrodes (nanowires) in highly concentrated electrolytes has been demonstrated [4]. In this work, the electrolyte was optimized by increasing the concentration of LiFSI salt (1M, 3M and 5 M), combined with the electrolyte additives FEC, as well as the anion receptors tris(hexafluoroisopropyl) (THFIPB) and tris(pentafluorophenyl) borane (TPFPB). The silicon based anodes were made of 73 wt% Si (Silgrain®, e-Si 400, a commercially available battery grade silicon from Elkem), with an average particle size of 3 µm, 11 wt% carbon black (Timcal, C-Nergy C65, CB) and 16 wt% Na-CMC binder (Sigma Aldrich Mw ~90000). Slurries were cast onto dendritic copper foil. The electrodes were cycled in 2016 coin cells in a half cell configuration with metallic lithium as the counter electrode. The impact of the concentration on the solvation of the salt was investigated by FTIR. The surface of the cycled electrodes was investigated post mortem by FTIR, XPS and SEM/EDX as well as FIB-SEM. By increasing the electrolyte concentration, the initial capacity increased, and the SEI layers were found to contain more salt reduction products, and also the SEI appeared to be thinner than for 1M concentration. However, the capacity of the 5M was fading more rapidly than the other electrolytes. The best capacity over 200 cycles was obtained for cells cycled with 3M LiFSI in combination with 10 wt% FEC and 2 wt% THFIPB. Based on the post mortem investigations, the SEI layer of this electrode was found to be rich in LiF, and with only small amounts of salt reduction products, comparable to the 1M electrolyte. [1] B. Philippe, R. Dedryvere, M. Gorgoi, H. Rensmo, D. Gonbeau, and K. Edström, Chemistry of Materials , 25(3) (2013) 394 [2] B. Philippe, R. Dedryvere, M. Gorgoi, H. Rensmo, D. Gonbeau and K. Edström, Journal of the American Chemical Society , 135 (2013) 9829 [3] Y. Yamada and A. Yamada, Journal of the Electrochemical Society , 162 (14) (2015) A2406 [4] Z. Chang, J. Wang, Z. Wu, M. Gao, S. Wu and S. Lu, Chem Sus Chem, 11 (2018) 1787

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
饕餮1235发布了新的文献求助10
28秒前
打打应助bazinga00采纳,获得200
29秒前
Hello应助科研通管家采纳,获得10
36秒前
wanci应助科研通管家采纳,获得10
37秒前
莱芙完成签到 ,获得积分10
1分钟前
饕餮1235完成签到,获得积分10
1分钟前
caigou完成签到,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
zhanggq123发布了新的文献求助10
1分钟前
七七发布了新的文献求助10
1分钟前
Ava应助zhanggq123采纳,获得10
2分钟前
NexusExplorer应助科研通管家采纳,获得10
2分钟前
2分钟前
3分钟前
SciGPT应助冰熊猫心中有光采纳,获得10
3分钟前
lixuebin完成签到 ,获得积分10
3分钟前
3分钟前
3分钟前
ys完成签到 ,获得积分10
3分钟前
Isaac完成签到 ,获得积分10
4分钟前
breeze完成签到,获得积分10
4分钟前
科研通AI6应助科研通管家采纳,获得10
4分钟前
Ava应助科研通管家采纳,获得10
4分钟前
4分钟前
Ann完成签到,获得积分10
4分钟前
云雨发布了新的文献求助10
5分钟前
ljl86400完成签到,获得积分10
5分钟前
5分钟前
zhanggq123发布了新的文献求助10
5分钟前
zhanggq123完成签到,获得积分10
5分钟前
5分钟前
5分钟前
萝卜发布了新的文献求助10
5分钟前
bazinga00发布了新的文献求助200
5分钟前
6分钟前
冷酷夏真完成签到 ,获得积分10
6分钟前
yuanshan完成签到,获得积分20
6分钟前
shendu完成签到 ,获得积分10
6分钟前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Voyage au bout de la révolution: de Pékin à Sochaux 700
血液中补体及巨噬细胞对大肠杆菌噬菌体PNJ1809-09活性的影响 500
Methodology for the Human Sciences 500
First Farmers: The Origins of Agricultural Societies, 2nd Edition 500
System of Systems Modeling and Analysis 400
Simulation of High-NA EUV Lithography 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4329449
求助须知:如何正确求助?哪些是违规求助? 3842598
关于积分的说明 12007303
捐赠科研通 3483283
什么是DOI,文献DOI怎么找? 1911265
邀请新用户注册赠送积分活动 955658
科研通“疑难数据库(出版商)”最低求助积分说明 856475