Manganese oxidation as the origin of the anomalous capacity of Mn-containing Li-excess cathode materials

电化学 氧化态 阴极 材料科学 无机化学 锂(药物) 离子 化学 八面体 氧气 过氧化物 氧化还原 电极 物理化学 催化作用 有机化学 内分泌学 医学
作者
Maxwell D. Radin,Julija Vinckevičiu̅tė,Ram Seshadri,Anton Van der Ven
出处
期刊:Nature Energy [Nature Portfolio]
卷期号:4 (8): 639-646 被引量:211
标识
DOI:10.1038/s41560-019-0439-6
摘要

The lithium-excess manganese oxides are a candidate cathode material for the next generation of Li-ion batteries because of their ability to reversibly intercalate more Li than traditional cathode materials. Although reversible oxidation of lattice oxygen has been proposed as the origin of this anomalous excess capacity, questions about the underlying electrochemical reaction mechanisms remain unresolved. Here, we critically analyse the O2−/O− oxygen redox hypothesis and explore alternative explanations for the origin of the anomalous capacity, including the formation of peroxide ions or trapped oxygen molecules and the oxidation of Mn. First-principles calculations motivated by the Li–Mn–O phase diagram show that the electrochemical behaviour of the Li-excess manganese oxides is thermodynamically consistent with the oxidation of Mn from the +4 oxidation state to the +7 oxidation state and the concomitant migration of Mn from octahedral sites to tetrahedral sites. It is shown that the Mn oxidation hypothesis can explain the poorly understood electrochemical behaviour of Li-excess materials, including the activation step, the voltage hysteresis and voltage fade. Reversible anion redox is widely accepted as the origin for the extra capacity of Li-excess cathode materials. Here, the authors analyse the literature and theorize that the oxidation of Mn beyond the +4 state could be responsible for the extra capacity of Li-excess Mn oxides.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
爆米花应助黄天采纳,获得10
2秒前
科研通AI5应助yanziwu94采纳,获得10
4秒前
材料若饥完成签到,获得积分10
6秒前
10秒前
brisk应助橘子采纳,获得20
11秒前
科研通AI5应助萝卜猪采纳,获得10
11秒前
Grace完成签到,获得积分10
13秒前
田様应助微笑的绿旋采纳,获得10
14秒前
yanziwu94发布了新的文献求助10
16秒前
18秒前
TJ完成签到,获得积分10
19秒前
19秒前
24秒前
24秒前
24秒前
韋晴完成签到,获得积分10
25秒前
路过完成签到,获得积分10
26秒前
yu完成签到,获得积分10
26秒前
qing应助机智的著采纳,获得10
29秒前
suwan发布了新的文献求助10
29秒前
29秒前
橘子完成签到,获得积分10
30秒前
30秒前
故意的乐菱完成签到,获得积分10
31秒前
Freda完成签到,获得积分10
32秒前
33秒前
SYLH应助科研通管家采纳,获得10
36秒前
SYLH应助科研通管家采纳,获得10
36秒前
SYLH应助科研通管家采纳,获得10
36秒前
Hello应助科研通管家采纳,获得10
36秒前
36秒前
英姑应助科研通管家采纳,获得10
36秒前
37秒前
pty完成签到,获得积分20
38秒前
bkagyin应助Luna采纳,获得10
38秒前
哈哈哈完成签到,获得积分10
39秒前
39秒前
Iwan完成签到,获得积分10
40秒前
110完成签到 ,获得积分10
40秒前
斯文败类应助hanchangcun采纳,获得10
40秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 400
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
The Burge and Minnechaduza Clarendonian mammalian faunas of north-central Nebraska 206
Fatigue of Materials and Structures 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3831605
求助须知:如何正确求助?哪些是违规求助? 3373811
关于积分的说明 10481474
捐赠科研通 3093752
什么是DOI,文献DOI怎么找? 1702983
邀请新用户注册赠送积分活动 819267
科研通“疑难数据库(出版商)”最低求助积分说明 771328