炎症
基因敲除
THP1细胞系
小干扰RNA
转染
脂质代谢
CD36
肿瘤坏死因子α
细胞凋亡
细胞生物学
下调和上调
生物
巨噬细胞
细胞培养
化学
分子生物学
体外
免疫学
生物化学
受体
基因
遗传学
作者
Lei Wang,Jingwen Xia,Zun‐Ping Ke,Bing‐Hong Zhang
摘要
Abstract Atherosclerosis has been recognized as a chronic inflammation process induced by lipid of the vessel wall. Oxidized low‐density lipoprotein (ox‐LDL) can drive atherosclerosis progression involving macrophages. Recently, long noncoding RNAs (lncRNAs) have been reported to play critical roles in atherosclerosis development. In our current study, we focused on the biological roles of lncRNA NEAT1 in atherosclerosis progress. Here, we found that ox‐LDL was able to trigger human macrophages THP‐1 cells, a human monocytic cell line, apoptosis in a dose‐dependent and time‐dependent course. In addition, we observed that NEAT1 was significantly increased in THP‐1 cells incubated with ox‐LDL and meanwhile miR‐342‐3p was greatly decreased. Then, NEAT1 was silenced by transfection of small interfering RNA (siRNA) of NEAT1 into THP‐1 cells. As exhibited, CD36, oil‐red staining levels, total cholesterol (TC), total cholesterol (TG) levels and THP‐1 cell apoptosis were obviously repressed by knockdown of NEAT1. Furthermore, inhibition of NEAT1 contributed to the repression of inflammation in vitro. Interleukin 6 (IL‐6), IL‐1β, cyclooxygenase‐2 (COX‐2) and tumour necrosis factor‐alpha (TNF‐α) protein levels were remarkably depressed by NEAT1 siRNA in THP‐1 cells. By using bioinformatics analysis, miR‐342‐3p was predicted as a downstream target of NEAT1 and the correlation between them was confirmed in our study. Moreover, overexpression of miR‐342‐3p could also greatly suppress inflammation response and lipid uptake in THP‐1 cells. Knockdown of NEAT1 and miR‐342‐3p mimics inhibited lipid uptake in THP‐1 cells. In conclusion, we implied that blockade of NEAT1 repressed inflammation response through modulating miR‐342‐3p in human macrophages THP‐1 cells and NEAT1 may offer a promising strategy to treat atherosclerotic cardiovascular diseases.
科研通智能强力驱动
Strongly Powered by AbleSci AI