Fragile neural networks: the importance of image standardization for deep learning in digital pathology

计算机科学 深度学习 人工神经网络 人工智能 卷积神经网络 数字化病理学 深层神经网络
作者
Jonathan Folmsbee,Starr Johnson,Xulei Liu,Margaret Brandwein-Weber,Scott Doyle
标识
DOI:10.1117/12.2512992
摘要

Recently in the field of digital pathology, there have been promising advances with regards to deep learning for pathological images. These methods are often considered “black boxes”, where tracing inputs to outputs and diagnosing errors is a difficult task. This is important as neural networks are fragile, and dataset variation, which in digital pathology is attributed to biological variance, can cause low accuracy. In deep learning, this is typically addressed by adding data to the training set. However, training is costly and time-consuming to create and may not address all variation seen in these images. Digitized histology carries a great deal of variation across many dimensions (color / stain variation, lighting intensity, presentation of a disease, etc.), and some of these “low-level” image variations may cause a deep network to break due to their fragility. In this work, we use a unique dataset – cases of serially-registered H and E tissue samples from oral cavity cancer (OCC) patients – to explore the errors of a classifier trained to identify and segment different tissue types. Registered serial sections allow us to eliminate variability due to biological structure and focus on image variability including staining and lighting, and try to identify sources of error that may cause deep learning to fail. We find that perceptually-insignificant changes in an image (minor lighting and color shifts) can result in extremely poor classification performance, even when the training process tries to prevent overfitting. This suggests that great care must be taken to augment and normalize datasets to prevent errors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
qsc发布了新的文献求助10
1秒前
2秒前
嘻嘻完成签到 ,获得积分20
4秒前
唐禹嘉完成签到 ,获得积分10
4秒前
彭于晏应助逝月采纳,获得10
5秒前
lling完成签到 ,获得积分10
6秒前
完犊子发布了新的文献求助10
7秒前
Only完成签到 ,获得积分10
7秒前
科研孙完成签到,获得积分10
8秒前
友好的牛排完成签到,获得积分10
8秒前
深情安青应助林松采纳,获得10
9秒前
糊辣鱼完成签到 ,获得积分10
11秒前
longh完成签到,获得积分10
11秒前
柴yuki完成签到 ,获得积分10
12秒前
ARIA完成签到 ,获得积分10
15秒前
深情安青应助完犊子采纳,获得10
15秒前
15秒前
17秒前
17秒前
17秒前
迅速的萧完成签到 ,获得积分10
18秒前
欢呼妙菱完成签到,获得积分10
19秒前
崔佳鑫完成签到 ,获得积分10
21秒前
21秒前
逝月发布了新的文献求助10
21秒前
dbdxyty完成签到,获得积分10
21秒前
teargasxq发布了新的文献求助30
22秒前
一路硕博完成签到,获得积分10
22秒前
白也完成签到,获得积分10
24秒前
阿尔文完成签到,获得积分10
24秒前
Dotson完成签到,获得积分10
26秒前
汉堡包应助七只狐狸采纳,获得10
26秒前
brianzk1989完成签到,获得积分0
27秒前
林松发布了新的文献求助10
27秒前
lilili完成签到,获得积分10
28秒前
123456完成签到 ,获得积分10
30秒前
个性的翠芙完成签到 ,获得积分10
31秒前
小云完成签到,获得积分10
31秒前
Worenxian完成签到,获得积分10
32秒前
njseu完成签到 ,获得积分10
32秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Images that translate 500
引进保护装置的分析评价八七年国外进口线路等保护运行情况介绍 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3840885
求助须知:如何正确求助?哪些是违规求助? 3382790
关于积分的说明 10526580
捐赠科研通 3102659
什么是DOI,文献DOI怎么找? 1708933
邀请新用户注册赠送积分活动 822781
科研通“疑难数据库(出版商)”最低求助积分说明 773632