Learning Modality-Specific Representations for Visible-Infrared Person Re-Identification

计算机科学 人工智能 判别式 模式 分类器(UML) 模式识别(心理学) 模态(人机交互) 计算机视觉 机器学习 社会科学 社会学
作者
Zhanxiang Feng,Jianhuang Lai,Xiaohua Xie
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:29: 579-590 被引量:240
标识
DOI:10.1109/tip.2019.2928126
摘要

Traditional person re-identification (re-id) methods perform poorly under changing illuminations. This situation can be addressed by using dual-cameras that capture visible images in a bright environment and infrared images in a dark environment. Yet, this scheme needs to solve the visible-infrared matching issue, which is largely under-studied. Matching pedestrians across heterogeneous modalities is extremely challenging because of different visual characteristics. In this paper, we propose a novel framework that employ modality-specific networks to tackle with the heterogeneous matching problem. The proposed framework utilizes the modality-related information and extracts modality-specific representations (MSR) by constructing an individual network for each modality. In addition, a cross-modality Euclidean constraint is introduced to narrow the gap between different networks. We also integrate the modality-shared layers into modality-specific networks to extract shareable information and use a modality-shared identity loss to facilitate the extraction of modality-invariant features. Then a modality-specific discriminant metric is learned for each domain to strengthen the discriminative power of MSR. Eventually, we use a view classifier to learn view information. The experiments demonstrate that the MSR effectively improves the performance of deep networks on VI-REID and remarkably outperforms the state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
高大宛完成签到,获得积分10
2秒前
2秒前
2秒前
2秒前
3秒前
4秒前
铁布衫金钟罩完成签到,获得积分10
4秒前
鳗鱼灵阳完成签到,获得积分20
4秒前
爱莉希雅完成签到,获得积分10
4秒前
4秒前
WSY发布了新的文献求助10
5秒前
kkkkkkkk发布了新的文献求助10
5秒前
刘雨森发布了新的文献求助10
6秒前
6秒前
科研通AI5应助科研通管家采纳,获得30
6秒前
乐乐应助科研通管家采纳,获得10
6秒前
传奇3应助科研通管家采纳,获得10
6秒前
爆米花应助科研通管家采纳,获得10
6秒前
科研通AI5应助科研通管家采纳,获得10
6秒前
所所应助科研通管家采纳,获得10
6秒前
酷波er应助albert Tesla采纳,获得10
7秒前
科研通AI5应助科研通管家采纳,获得10
7秒前
笑解烦恼结完成签到,获得积分10
7秒前
慕青应助科研通管家采纳,获得10
7秒前
lingquanmeng完成签到 ,获得积分10
7秒前
天真的宝马完成签到 ,获得积分10
7秒前
冰魂应助科研通管家采纳,获得10
7秒前
SciGPT应助小羊采纳,获得20
7秒前
有你好梦应助科研通管家采纳,获得10
7秒前
香蕉觅云应助科研通管家采纳,获得10
7秒前
FashionBoy应助科研通管家采纳,获得10
8秒前
wanci应助科研通管家采纳,获得10
8秒前
JamesPei应助科研通管家采纳,获得10
8秒前
许甜甜鸭应助科研通管家采纳,获得10
8秒前
cloud完成签到,获得积分10
8秒前
冰魂应助科研通管家采纳,获得10
8秒前
彭于晏应助科研通管家采纳,获得10
8秒前
充电宝应助科研通管家采纳,获得10
8秒前
SciGPT应助科研通管家采纳,获得10
8秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Visceral obesity is associated with clinical and inflammatory features of asthma: A prospective cohort study 300
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Engineering the boosting of the magnetic Purcell factor with a composite structure based on nanodisk and ring resonators 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3838141
求助须知:如何正确求助?哪些是违规求助? 3380447
关于积分的说明 10514320
捐赠科研通 3100011
什么是DOI,文献DOI怎么找? 1707291
邀请新用户注册赠送积分活动 821593
科研通“疑难数据库(出版商)”最低求助积分说明 772797