A Multimodal Deep Learning Method for Android Malware Detection Using Various Features

计算机科学 恶意软件 Android(操作系统) 人工智能 深度学习 特征提取 机器学习 卷积神经网络 特征学习 移动设备 Android恶意软件 数据挖掘 模式识别(心理学) 计算机安全 操作系统
作者
TaeGuen Kim,BooJoong Kang,Mina Rho,Sakir Sezer,Eul Gyu Im
出处
期刊:IEEE Transactions on Information Forensics and Security [Institute of Electrical and Electronics Engineers]
卷期号:14 (3): 773-788 被引量:440
标识
DOI:10.1109/tifs.2018.2866319
摘要

With the widespread use of smartphones, the number of malware has been increasing exponentially. Among smart devices, android devices are the most targeted devices by malware because of their high popularity. This paper proposes a novel framework for android malware detection. Our framework uses various kinds of features to reflect the properties of android applications from various aspects, and the features are refined using our existence-based or similarity-based feature extraction method for effective feature representation on malware detection. Besides, a multimodal deep learning method is proposed to be used as a malware detection model. This paper is the first study of the multimodal deep learning to be used in the android malware detection. With our detection model, it was possible to maximize the benefits of encompassing multiple feature types. To evaluate the performance, we carried out various experiments with a total of 41 260 samples. We compared the accuracy of our model with that of other deep neural network models. Furthermore, we evaluated our framework in various aspects including the efficiency in model updates, the usefulness of diverse features, and our feature representation method. In addition, we compared the performance of our framework with those of other existing methods including deep learning-based methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ZZC10完成签到,获得积分10
刚刚
完全懵逼完成签到,获得积分10
刚刚
1秒前
柠檬不吃酸完成签到 ,获得积分10
2秒前
走了发布了新的文献求助10
2秒前
3秒前
卡脖子天堂完成签到,获得积分10
3秒前
慕月完成签到,获得积分10
4秒前
wanci应助xr采纳,获得10
4秒前
5秒前
5秒前
5秒前
从容山兰完成签到,获得积分10
5秒前
6秒前
luyu发布了新的文献求助10
6秒前
6秒前
Orange应助kjz采纳,获得30
6秒前
111完成签到,获得积分10
6秒前
干饭人完成签到,获得积分10
6秒前
6秒前
gxch发布了新的文献求助10
8秒前
汉堡包应助科研小狗采纳,获得10
9秒前
9秒前
fyjlfy发布了新的文献求助10
9秒前
9秒前
郝郝完成签到,获得积分10
10秒前
Yasong发布了新的文献求助10
11秒前
KuangHS发布了新的文献求助30
11秒前
脑洞疼应助Taoie采纳,获得10
11秒前
13秒前
like10spirit发布了新的文献求助10
13秒前
shanshanlaichi完成签到,获得积分10
13秒前
14秒前
吹又生发布了新的文献求助10
14秒前
14秒前
15秒前
16秒前
16秒前
从容山兰发布了新的文献求助10
16秒前
完美世界应助安静海莲采纳,获得30
16秒前
高分求助中
【请各位用户详细阅读此贴后再求助】科研通的精品贴汇总(请勿应助) 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Research on Disturbance Rejection Control Algorithm for Aerial Operation Robots 1000
Global Eyelash Assessment scale (GEA) 1000
Maritime Applications of Prolonged Casualty Care: Drowning and Hypothermia on an Amphibious Warship 500
Comparison analysis of Apple face ID in iPad Pro 13” with first use of metasurfaces for diffraction vs. iPhone 16 Pro 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4050659
求助须知:如何正确求助?哪些是违规求助? 3588955
关于积分的说明 11405008
捐赠科研通 3315278
什么是DOI,文献DOI怎么找? 1823634
邀请新用户注册赠送积分活动 895517
科研通“疑难数据库(出版商)”最低求助积分说明 816871