Quantum machine learning with D‐wave quantum computer

量子 量子机器学习 量子计算机 量子算法 计算机科学 量子模拟器 量子力学 量子技术 物理 人工智能 量子网络 量子信息
作者
Feng Hu,Ban-Nan Wang,Ning Wang,Chao Wang
出处
期刊:Quantum engineering [Wiley]
卷期号:1 (2) 被引量:31
标识
DOI:10.1002/que2.12
摘要

The new era of artificial intelligence (AI) aims to entangle the relationships among models (characterizations), algorithms, and implementations toward the high-level intelligence with general cognitive ability, strong robustness, and interpretability, which is intractable for machine learning (ML). Quantum computer provides a new computing paradigm for ML. Although universal quantum computers are still in infancy, special-purpose D-Wave machine hopefully becomes the breaking point of commercialized quantum computing. The core principle, quantum annealing (QA), enables the quantum system to naturally evolve toward the low-energy states. D-Wave's quantum computer has developed some applications of quantum ML based on quantum-assisted ML algorithms, quantum Boltzmann machine, etc. Additionally, working with CPUs, quantum processing units is likely to advance ML in a quantum-inspired way. Thus, a new advanced computing architecture, quantum-classical hybrid approach consisting of QA, classical computing, and brain-inspired cognitive science, is required to explore its superiority to universal quantum algorithms and classical ML algorithms. It is important to explore hybrid quantum/classical approaches to overcome the defects of ML such as high dependence on training data, low robustness to the noises, and cognitive impairment. The new framework is expected to gradually form a highly effective, accurate, and adaptive intelligent computing architecture for the next generation of AI.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Annie完成签到,获得积分10
刚刚
桐桐应助乐观的花生采纳,获得10
2秒前
FashionBoy应助霍师傅采纳,获得10
4秒前
liangxt发布了新的文献求助10
5秒前
6秒前
7秒前
8秒前
xiaopan9083发布了新的文献求助10
10秒前
四夕完成签到 ,获得积分10
12秒前
sparkle发布了新的文献求助10
12秒前
13秒前
Leeu完成签到,获得积分10
13秒前
科研通AI5应助xiaopan9083采纳,获得10
16秒前
1LDan完成签到,获得积分20
17秒前
20秒前
rrrrroxie应助wendinfgmei采纳,获得30
21秒前
归尘应助April采纳,获得10
22秒前
顺心牛排发布了新的文献求助10
25秒前
26秒前
28秒前
大萝贝完成签到,获得积分10
28秒前
FashionBoy应助顺心牛排采纳,获得10
30秒前
liangxt完成签到,获得积分20
31秒前
徐若楠发布了新的文献求助10
31秒前
32秒前
归尘应助April采纳,获得10
36秒前
机智的莫茗完成签到,获得积分10
38秒前
香蕉觅云应助徐若楠采纳,获得10
38秒前
乐观的花生完成签到,获得积分10
39秒前
我是老大应助Xiang采纳,获得30
39秒前
典雅的访风完成签到,获得积分10
39秒前
耶耶完成签到,获得积分10
41秒前
2463841186发布了新的文献求助30
44秒前
爆米花应助略略略采纳,获得10
46秒前
46秒前
52秒前
55秒前
zlsf应助勺儿采纳,获得10
57秒前
略略略发布了新的文献求助10
1分钟前
CodeCraft应助吴可之采纳,获得10
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778595
求助须知:如何正确求助?哪些是违规求助? 3324214
关于积分的说明 10217445
捐赠科研通 3039397
什么是DOI,文献DOI怎么找? 1668060
邀请新用户注册赠送积分活动 798494
科研通“疑难数据库(出版商)”最低求助积分说明 758385