Source rock characterization of the Albian Kazhdumi formation by integrating well logs and geochemical data in the Azadegan oilfield, Abadan plain, SW Iran

地球化学 油页岩 钻探 岩性 沉积沉积环境
作者
Vahid Bolandi,Ali Kadkhodaie,Bahram Alizadeh,Jabrail Tahmorasi,Reza Farzi
出处
期刊:Journal of Petroleum Science and Engineering [Elsevier BV]
卷期号:133: 167-176 被引量:37
标识
DOI:10.1016/j.petrol.2015.05.022
摘要

There are several source rock units in the Zagros Basin. Nevertheless, the Cretaceous Kazhdumi formation has presumably produced the majority of the commercial hydrocarbons in this area. The presence of organic matter rich and thermally mature rock units containing oil or gas prone kerogen is the key factor controlling the hydrocarbon generation potential. Owing to the lack of organic geochemical studies such a potential is poorly investigated in the Azadegan oilfield. In this study, firstly we investigate the lower Cretaceous Kazhdumi formation potential source rock based on geochemical parameters including type and amount of kerogen and thermal maturity, obtained from analyzing 45 cutting samples from 9 wells by using Rock-Eval 6 apparatus. Moreover, vitrinite reflectance measurements were carried out on 11 samples utilizing Zeiss Axioplan II microscope for further examination of the thermal maturation. Burial history analysis and thermal maturity modeling suggests that Kazdumi formation is marginally mature (vitrinite reflectance in the range of 0.5–0.7%) with hydrocarbon expulsion beginning since about 14 Ma. The results indicate increasing maturity from south to the north as a result of burial deepening of the Kazhdumi Formation. It contains type II and mixed types II/III kerogen with TOC (Total Organic Carbon) values up to 4.88 wt% and Source Potential Index (SPI) value of 3.72 t HC/m2 providing a moderate source for the hydrocarbons encountered in the reservoir rocks. In the second part of this research, we attempt to characterize the Kazhdumi source rock by using intelligent systems. In this regard, a three-layered back-propagation Artificial Neural Network (ANN) with Levenberg–Marquardt (LM) training algorithm was designed to predict TOC values from well log data (RHOB, THOR, SGR, NPHI, DT). This network is capable of predicting TOC with correlation coefficient of 98.63% and 82.62% and MSE of 0.0067 and 0.1772 for training and testing steps, respectively. According to the ANN modeling and TOC distribution map, organic richness of the Kazhdumi formation increases from south to the north over the study area.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
早早早完成签到,获得积分10
1秒前
大雄的梦想是什么完成签到 ,获得积分10
1秒前
张小苟发布了新的文献求助10
3秒前
称心不尤完成签到 ,获得积分10
7秒前
鱼咬羊完成签到,获得积分10
7秒前
8秒前
10秒前
美丽钢铁侠完成签到,获得积分20
13秒前
spring17发布了新的文献求助30
14秒前
ding应助22采纳,获得10
15秒前
cnulee发布了新的文献求助10
17秒前
灵巧的以亦完成签到 ,获得积分10
18秒前
19秒前
spring17完成签到,获得积分20
26秒前
刘文思完成签到,获得积分10
30秒前
31秒前
32秒前
ZW发布了新的文献求助10
36秒前
cnulee完成签到,获得积分10
36秒前
玉龙月发布了新的文献求助10
38秒前
43秒前
无奈慕卉完成签到 ,获得积分10
44秒前
三物完成签到 ,获得积分10
45秒前
研友_VZG7GZ应助玉龙月采纳,获得10
48秒前
月光入梦完成签到 ,获得积分10
48秒前
22发布了新的文献求助10
50秒前
领导范儿应助moon采纳,获得10
53秒前
闪闪的斑马完成签到,获得积分10
55秒前
58秒前
无限小天鹅完成签到,获得积分10
59秒前
waayu完成签到 ,获得积分10
59秒前
哟呵完成签到,获得积分0
59秒前
59秒前
123完成签到,获得积分10
1分钟前
高兴的斑马完成签到 ,获得积分10
1分钟前
benlaron发布了新的文献求助30
1分钟前
1分钟前
MRM完成签到 ,获得积分10
1分钟前
77完成签到,获得积分10
1分钟前
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Fashion Brand Visual Design Strategy Based on Value Co-creation 350
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777918
求助须知:如何正确求助?哪些是违规求助? 3323510
关于积分的说明 10214659
捐赠科研通 3038693
什么是DOI,文献DOI怎么找? 1667611
邀请新用户注册赠送积分活动 798220
科研通“疑难数据库(出版商)”最低求助积分说明 758315