Predict DLBCL patients' recurrence within two years with Gaussian mixture model cluster oversampling and multi-kernel learning

混合模型 布里氏评分 计算机科学 人工智能 支持向量机 聚类分析 核(代数) 过采样 模式识别(心理学) 数学 带宽(计算) 组合数学 计算机网络
作者
Meng Xing,Yanbo Zhang,Hongmei Yu,Zhenhuan Yang,Xueling Li,Qiong Li,Yanlin Zhao,Zhiqiang Zhao,Yanhong Luo
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier BV]
卷期号:226: 107103-107103 被引量:7
标识
DOI:10.1016/j.cmpb.2022.107103
摘要

Diffuse large B-cell lymphoma (DLBCL) is common in adults' non-Hodgkin's lymphoma. Relapse mainly occurs within two years after diagnosis and has a poor prognosis. Relapse after two years is less frequent and has a better prognosis. In this work, we constructed a relapse prediction model for diffuse large B-cell lymphoma patients within two years, expecting to provide a reference for Clinicians to implement individualized treatment.We propose a secondary-level class imbalance method based on Gaussian mixture model (GMM) clustering resampling to balance the data. Then use a multi-kernel support vector machine(SVM) to inscribe heterogeneous clinical data. Finally, merging them to identify recurrence patients within two years.Among all the class imbalance methods in this work, Inverse Weighted -GMM +SMOTEENN has the best performance. Compared with NO-GMM (Directl use the SMOTEENN without the GMM clustering process), its Area Under the ROC Curve(AUC) increases by 8.75%, and ECE and brier scores decrease 2.07% and 3.09%, respectively. Among the four classification algorithms in this work, Multiple kernel learning (MKL) has the most minimized brier scores and expected calibration error(ECE), the largest AUC, accuracy, Recall, precision and F1, has the best discrimination and calibration.Our inverse weighted -GMM+SMOTEENN+MKL (GMM-SENN-MKL) method can handle data class imbalance and clinical heterogeneity data well and can be used to predict recurrence in DLBCL patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Sunny发布了新的文献求助10
刚刚
邓不利多i完成签到,获得积分10
刚刚
刚刚
脑洞疼应助xiaoxiao汉堡采纳,获得10
1秒前
随风旅鼠发布了新的文献求助10
1秒前
zzz完成签到,获得积分10
1秒前
苗苗子子完成签到,获得积分10
2秒前
2秒前
英俊的铭应助芝士双皮奶采纳,获得10
3秒前
3秒前
活泼的巧曼完成签到,获得积分10
3秒前
谨慎的雁桃完成签到,获得积分10
3秒前
CodeCraft应助apu采纳,获得10
4秒前
4秒前
婷杰发布了新的文献求助10
5秒前
Kongstrue发布了新的文献求助10
5秒前
WEI6完成签到,获得积分10
5秒前
6秒前
顺心静丹完成签到,获得积分10
6秒前
6秒前
无奈曼云完成签到,获得积分10
6秒前
隐形曼青应助sunset采纳,获得10
7秒前
彭于晏应助小余同学采纳,获得10
7秒前
深情安青应助BWL采纳,获得10
7秒前
爱悠悠完成签到 ,获得积分10
7秒前
wcy发布了新的文献求助10
8秒前
琉璃岁月发布了新的文献求助20
8秒前
zz完成签到,获得积分10
8秒前
8秒前
青鸟发布了新的文献求助10
8秒前
Hello应助ww采纳,获得10
9秒前
9秒前
9秒前
新颜完成签到 ,获得积分10
10秒前
10秒前
10秒前
11秒前
QL发布了新的文献求助20
11秒前
11秒前
11秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Technologies supporting mass customization of apparel: A pilot project 600
材料概论 周达飞 ppt 500
Nonrandom distribution of the endogenous retroviral regulatory elements HERV-K LTR on human chromosome 22 500
Hydropower Nation: Dams, Energy, and Political Changes in Twentieth-Century China 500
Introduction to Strong Mixing Conditions Volumes 1-3 500
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3806041
求助须知:如何正确求助?哪些是违规求助? 3350870
关于积分的说明 10351903
捐赠科研通 3066760
什么是DOI,文献DOI怎么找? 1684143
邀请新用户注册赠送积分活动 809333
科研通“疑难数据库(出版商)”最低求助积分说明 765463