Prediction of Tea Polyphenols, Free Amino Acids and Caffeine Content in Tea Leaves during Wilting and Fermentation Using Hyperspectral Imaging

高光谱成像 发酵 多酚 偏最小二乘回归 人工智能 支持向量机 数学 主成分分析 食品科学 生物系统 化学 计算机科学 统计 生物 生物化学 抗氧化剂
作者
Yilin Mao,He Li,Yu Wang,Kai Fan,Yujie Song,Xiao Han,Jie Zhang,Shibo Ding,Dapeng Song,Hui Wang,Zhaotang Ding
出处
期刊:Foods [Multidisciplinary Digital Publishing Institute]
卷期号:11 (16): 2537-2537 被引量:29
标识
DOI:10.3390/foods11162537
摘要

The withering and fermentation degrees are the key parameters to measure the processing technology of black tea. The traditional methods to judge the degree of withering and fermentation are time-consuming and inefficient. Here, a monitoring model of the biochemical components of tea leaves based on hyperspectral imaging technology was established to quantitatively judge the withering and fermentation degrees of fresh tea leaves. Hyperspectral imaging technology was used to obtain the spectral data during the withering and fermentation of the raw materials. The successive projections algorithm (SPA), competitive adaptive reweighted sampling (CARS), and uninformative variable elimination (UVE) are used to select the characteristic bands. Combined with the support vector machine (SVM), random forest (RF), and partial least square (PLS) methods, the monitoring models of the tea polyphenols (TPs), free amino acids (FAA) and caffeine (CAF) contents were established. The results show that: (1) CARS performs the best among the three feature band selection methods, and PLS performs the best among the three machine learning models; (2) the optimal models for predicting the content of the TPs, FAA, and CAF are CARS-PLS, SPA-PLS, and CARS-PLS, respectively, and the coefficient of determination of the prediction set is 0.91, 0.88, and 0.81, respectively; and (3) the best models for quantitatively judging the withering and fermentation degrees are FAA-SPA-PLS and TPs-CARS-PLS, respectively. The model proposed in this study can improve the monitoring efficiency of the biochemical components of tea leaves and provide a basis for the intelligent judgment of the withering and fermentation degrees in the process of black tea processing.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SYLH应助taishang采纳,获得10
刚刚
刚刚
坚强擎汉完成签到,获得积分10
1秒前
1秒前
科研助手6应助ComeOn采纳,获得10
1秒前
1秒前
1秒前
老耗关注了科研通微信公众号
2秒前
公孙朝雨完成签到,获得积分10
3秒前
ZhouLu发布了新的文献求助10
3秒前
Orange应助筋筋子采纳,获得10
4秒前
坚强擎汉发布了新的文献求助10
4秒前
梁guocui完成签到,获得积分10
4秒前
guozizi发布了新的文献求助100
5秒前
xiaoxiao发布了新的文献求助10
5秒前
kingwill应助xiao采纳,获得20
5秒前
6秒前
Duan完成签到,获得积分10
7秒前
所所应助甜甜语堂采纳,获得10
7秒前
Jasper应助Giao采纳,获得10
7秒前
Ych发布了新的文献求助10
8秒前
9秒前
yun发布了新的文献求助10
9秒前
10秒前
阵痛完成签到 ,获得积分10
10秒前
10秒前
11秒前
12秒前
12秒前
14秒前
14秒前
14秒前
完美世界应助wyc采纳,获得10
14秒前
贾舒涵发布了新的文献求助10
14秒前
15秒前
时年发布了新的文献求助10
15秒前
灰灰发布了新的文献求助10
15秒前
山晴应助淡然的冷霜采纳,获得10
16秒前
无花果应助吃书的猪采纳,获得200
16秒前
飞想思完成签到,获得积分10
16秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Introduction to Strong Mixing Conditions Volumes 1-3 500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3794234
求助须知:如何正确求助?哪些是违规求助? 3339125
关于积分的说明 10294117
捐赠科研通 3055695
什么是DOI,文献DOI怎么找? 1676766
邀请新用户注册赠送积分活动 804705
科研通“疑难数据库(出版商)”最低求助积分说明 762051