诱捕
消散
湍流
指数
物理
统计物理学
概率密度函数
运动学
雷诺数
科尔莫戈洛夫显微镜
机械
经典力学
涡流
湍流动能
统计
K-omega湍流模型
数学
涡度
热力学
语言学
哲学
作者
Toshiyuki Gotoh,Takeshi Watanabe,Izumi Saito
标识
DOI:10.1103/physrevlett.130.254001
摘要
Direct numerical simulation and theoretical analyses showed that the probability density functions (PDFs) of the energy dissipation rate and enstrophy in turbulence are asymptotically stretched gamma distributions with the same stretching exponent, and both the left and right tails of the enstrophy PDF are longer than those of the energy dissipation rate regardless of the Reynolds number. The differences in PDF tails arise due to the kinematics, with differences in the number of terms contributing to the dissipation rate and enstrophy. Meanwhile, the stretching exponent is determined by the dynamics and likeliness of singularities.
科研通智能强力驱动
Strongly Powered by AbleSci AI