Encoding physics to learn reaction–diffusion processes

可解释性 动力系统理论 概化理论 计算机科学 偏微分方程 人工智能 机器学习 理论计算机科学 物理 数学 量子力学 统计
作者
Chengping Rao,Pu Ren,Qi Wang,Oral Büyüköztürk,Hao Sun,Yang Liu
出处
期刊:Nature Machine Intelligence [Springer Nature]
卷期号:5 (7): 765-779 被引量:105
标识
DOI:10.1038/s42256-023-00685-7
摘要

Modelling complex spatiotemporal dynamical systems, such as reaction–diffusion processes, which can be found in many fundamental dynamical effects in various disciplines, has largely relied on finding the underlying partial differential equations (PDEs). However, predicting the evolution of these systems remains a challenging task for many cases owing to insufficient prior knowledge and a lack of explicit PDE formulation for describing the nonlinear process of the system variables. With recent data-driven approaches, it is possible to learn from measurement data while adding prior physics knowledge. However, existing physics-informed machine learning paradigms impose physics laws through soft penalty constraints, and the solution quality largely depends on a trial-and-error proper setting of hyperparameters. Here we propose a deep learning framework that forcibly encodes a given physics structure in a recurrent convolutional neural network to facilitate learning of the spatiotemporal dynamics in sparse data regimes. We show with extensive numerical experiments how the proposed approach can be applied to a variety of problems regarding reaction–diffusion processes and other PDE systems, including forward and inverse analysis, data-driven modelling and discovery of PDEs. We find that our physics-encoding machine learning approach shows high accuracy, robustness, interpretability and generalizability. Reaction–diffusion processes, which can be found in many fundamental spatiotemporal dynamical phenomena in chemistry, biology, geology, physics and ecology, can be modelled by partial differential equations (PDEs). Physics-informed deep learning approaches can accelerate the discovery of PDEs and Rao et al. improve interpretability and generalizability by strong encoding of the underlying physics structure in the neural network.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
dian完成签到 ,获得积分10
1秒前
Owen应助热心凡雁采纳,获得10
1秒前
量子星尘发布了新的文献求助10
1秒前
研友_VZG7GZ应助周周采纳,获得10
2秒前
云端完成签到 ,获得积分20
4秒前
烟花应助沙漠水手采纳,获得10
4秒前
mufeixue完成签到,获得积分10
6秒前
科研通AI6应助俭朴千琴采纳,获得30
7秒前
可爱的函函应助cuer采纳,获得10
8秒前
9秒前
调皮语雪发布了新的文献求助10
12秒前
12秒前
13秒前
魔幻的溪流完成签到 ,获得积分10
14秒前
求文献完成签到,获得积分10
14秒前
14秒前
14秒前
Sandewna关注了科研通微信公众号
15秒前
16秒前
gong9456发布了新的文献求助10
16秒前
17秒前
开花发布了新的文献求助10
17秒前
17秒前
思源应助坚强的雨莲采纳,获得10
18秒前
18秒前
生动谷蓝完成签到,获得积分10
19秒前
19秒前
20秒前
20秒前
21秒前
粥虾米发布了新的文献求助10
21秒前
21秒前
FashionBoy应助橘子屿布丁采纳,获得10
22秒前
朴素的雅寒完成签到,获得积分10
22秒前
WYJ发布了新的文献求助10
23秒前
110o发布了新的文献求助10
23秒前
25秒前
cuer发布了新的文献求助10
25秒前
Kevin完成签到,获得积分10
25秒前
那时花开应助单薄的蛋挞采纳,获得10
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5600893
求助须知:如何正确求助?哪些是违规求助? 4686444
关于积分的说明 14843995
捐赠科研通 4678825
什么是DOI,文献DOI怎么找? 2539074
邀请新用户注册赠送积分活动 1505973
关于科研通互助平台的介绍 1471241