Encoding physics to learn reaction–diffusion processes

可解释性 动力系统理论 概化理论 计算机科学 偏微分方程 人工智能 机器学习 理论计算机科学 统计物理学 物理 数学 量子力学 统计
作者
Chengping Rao,Pu Ren,Qi Wang,Oral Büyüköztürk,Hao Sun,Yang Liu
出处
期刊:Nature Machine Intelligence [Springer Nature]
卷期号:5 (7): 765-779 被引量:4
标识
DOI:10.1038/s42256-023-00685-7
摘要

Modelling complex spatiotemporal dynamical systems, such as reaction–diffusion processes, which can be found in many fundamental dynamical effects in various disciplines, has largely relied on finding the underlying partial differential equations (PDEs). However, predicting the evolution of these systems remains a challenging task for many cases owing to insufficient prior knowledge and a lack of explicit PDE formulation for describing the nonlinear process of the system variables. With recent data-driven approaches, it is possible to learn from measurement data while adding prior physics knowledge. However, existing physics-informed machine learning paradigms impose physics laws through soft penalty constraints, and the solution quality largely depends on a trial-and-error proper setting of hyperparameters. Here we propose a deep learning framework that forcibly encodes a given physics structure in a recurrent convolutional neural network to facilitate learning of the spatiotemporal dynamics in sparse data regimes. We show with extensive numerical experiments how the proposed approach can be applied to a variety of problems regarding reaction–diffusion processes and other PDE systems, including forward and inverse analysis, data-driven modelling and discovery of PDEs. We find that our physics-encoding machine learning approach shows high accuracy, robustness, interpretability and generalizability. Reaction–diffusion processes, which can be found in many fundamental spatiotemporal dynamical phenomena in chemistry, biology, geology, physics and ecology, can be modelled by partial differential equations (PDEs). Physics-informed deep learning approaches can accelerate the discovery of PDEs and Rao et al. improve interpretability and generalizability by strong encoding of the underlying physics structure in the neural network.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wuminru完成签到,获得积分10
1秒前
2秒前
Lucas应助大方百招采纳,获得10
2秒前
3秒前
大意的悟空完成签到,获得积分10
4秒前
Hale完成签到,获得积分10
4秒前
yy发布了新的文献求助10
5秒前
Jasper应助飞快的疾采纳,获得10
5秒前
屋顶橙子味完成签到 ,获得积分10
6秒前
coffeexx完成签到 ,获得积分10
6秒前
kaww发布了新的文献求助10
11秒前
王崇霖完成签到 ,获得积分10
13秒前
顾矜应助哈哈哈哈哈采纳,获得10
16秒前
思源应助翟拂采纳,获得10
16秒前
CipherSage应助程方洁采纳,获得10
21秒前
22秒前
精明白风发布了新的文献求助10
22秒前
22秒前
23秒前
Lucas应助Echo采纳,获得10
23秒前
大模型应助xinru采纳,获得10
23秒前
23秒前
隐形曼青应助科研通管家采纳,获得10
23秒前
小马甲应助科研通管家采纳,获得10
23秒前
打打应助科研通管家采纳,获得30
23秒前
领导范儿应助科研通管家采纳,获得10
23秒前
wanci应助科研通管家采纳,获得10
23秒前
8R60d8应助科研通管家采纳,获得10
23秒前
23秒前
传奇3应助科研通管家采纳,获得10
23秒前
和平使命应助科研通管家采纳,获得20
23秒前
CipherSage应助科研通管家采纳,获得10
23秒前
23秒前
26秒前
甜甜映波发布了新的文献求助10
27秒前
28秒前
28秒前
大方百招发布了新的文献求助10
30秒前
索骥完成签到 ,获得积分10
30秒前
SAINT发布了新的文献求助10
33秒前
高分求助中
请在求助之前详细阅读求助说明!!!! 20000
Sphäroguß als Werkstoff für Behälter zur Beförderung, Zwischen- und Endlagerung radioaktiver Stoffe - Untersuchung zu alternativen Eignungsnachweisen: Zusammenfassender Abschlußbericht 1500
One Man Talking: Selected Essays of Shao Xunmei, 1929–1939 1000
Yuwu Song, Biographical Dictionary of the People's Republic of China 700
[Lambert-Eaton syndrome without calcium channel autoantibodies] 520
The Three Stars Each: The Astrolabes and Related Texts 500
india-NATO Dialogue: Addressing International Security and Regional Challenges 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 有机化学 工程类 生物化学 纳米技术 物理 内科学 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 电极 光电子学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 2469673
求助须知:如何正确求助?哪些是违规求助? 2136808
关于积分的说明 5444347
捐赠科研通 1861207
什么是DOI,文献DOI怎么找? 925652
版权声明 562702
科研通“疑难数据库(出版商)”最低求助积分说明 495140