已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Classification of Potent and Weak Penetration Enhancers Using Multiple Feature Selection Methods and Machine Learning Models

透皮 人工智能 支持向量机 特征选择 机器学习 随机森林 计算机科学 茶碱 交叉验证 药理学 生物
作者
Baddipadige Raju,Neha Verma,Gera Narendra,Om Silakari,Bharti Sapra
出处
期刊:Journal of Pharmaceutical Innovation [Springer Science+Business Media]
标识
DOI:10.1007/s12247-023-09757-y
摘要

Chemical penetration enhancers (CPEs) are important in transdermal drug delivery (TDDD) formulations because they assist drugs in moving across the stratum corneum. Hydrocortisone (0.1% hydrocortisone, propylene glycol), oestradiol (0.045 mg estradiol/0.015 mg levonorgestrel, propylene glycol), and testosterone (2% testosterone, propylene glycol) are some examples of marketing TDDD formulations. As the transdermal route for drug administration becomes a safer and more appealing alternative to hypodermic needles, the search for new CPEs and their development becomes more important. Thus, the current work was directed toward the rapid identification of potent CPEs through the development of robust machine learning (ML) classification models. Two large penetration enhancer (PE) data sets reported to date such as hydrocortisone (139 PEs) and theophylline (101 PEs) were used to build classification models. In the present investigation, a combination of feature selection methods, i.e., Boruta and Recursive Feature Elimination (RFE), and machine learning (ML) algorithms such as support vector machine (SVM), random forest (RF), and artificial neural network (ANN) were employed to classify the potent and weak penetration enhancers of hydrocortisone and theophylline. The tenfold cross-validation and Y-randomization methods were used to evaluate the prediction performance of the developed models. Significant classification models were built for both data sets when the RFE method and RF algorithm were used. RF classifiers outperformed hydrocortisone and theophylline data sets with test set accuracy and Matthew’s correlation coefficient (MCC) greater than 0.78. Simultaneously, four important features required for the accurate classification of potent and weak PEs were identified, i.e., nHCsatu, minHCsatu, AATS4p, and GATS4e. Our approach produced robust ML classification models that can be applied to prioritize PEs from large databases. Utilization of these ML models in virtual screening experiments could save time and effort in the identification of potential PEs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wangqq发布了新的文献求助10
刚刚
刚刚
kiltorh完成签到,获得积分10
1秒前
DX完成签到 ,获得积分10
1秒前
123123完成签到 ,获得积分10
3秒前
北北北发布了新的文献求助30
4秒前
5秒前
5秒前
ww发布了新的文献求助10
6秒前
6秒前
盖景浩发布了新的文献求助10
8秒前
9秒前
77发布了新的文献求助10
9秒前
周老八发布了新的文献求助10
11秒前
123完成签到 ,获得积分10
11秒前
12秒前
Leslie应助默默的万言采纳,获得10
12秒前
orixero应助苜久久采纳,获得10
13秒前
彼岸花开得正红完成签到,获得积分10
16秒前
Rational完成签到,获得积分10
17秒前
科研通AI2S应助YX采纳,获得10
18秒前
伊力扎提发布了新的文献求助10
19秒前
21秒前
22秒前
24秒前
24秒前
酷波er应助nn采纳,获得10
25秒前
26秒前
27秒前
萌仔发布了新的文献求助10
27秒前
Tovy发布了新的文献求助10
28秒前
李健应助77采纳,获得10
28秒前
踌躇前半生完成签到,获得积分10
28秒前
香蕉觅云应助伊力扎提采纳,获得10
28秒前
YX发布了新的文献求助10
30秒前
emperor发布了新的文献求助10
31秒前
33秒前
专注翠霜完成签到 ,获得积分10
33秒前
Aaron完成签到 ,获得积分10
35秒前
KirinLee麒麟完成签到,获得积分10
35秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
F-35B V2.0 How to build Kitty Hawk's F-35B Version 2.0 Model 2500
줄기세포 생물학 1000
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
2025-2031全球及中国蛋黄lgY抗体行业研究及十五五规划分析报告(2025-2031 Global and China Chicken lgY Antibody Industry Research and 15th Five Year Plan Analysis Report) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4483062
求助须知:如何正确求助?哪些是违规求助? 3939098
关于积分的说明 12218897
捐赠科研通 3594317
什么是DOI,文献DOI怎么找? 1976701
邀请新用户注册赠送积分活动 1013825
科研通“疑难数据库(出版商)”最低求助积分说明 906901