Fast Continual Multi-View Clustering With Incomplete Views

聚类分析 可扩展性 计算机科学 完整信息 趋同(经济学) 利用 稀疏矩阵 数据挖掘 理论计算机科学 机器学习 数据库 数学 物理 计算机安全 数理经济学 量子力学 经济 高斯分布 经济增长
作者
Xinhang Wan,Bin Xiao,Xinwang Liu,Jiyuan Liu,Weixuan Liang,En Zhu
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:33: 2995-3008 被引量:10
标识
DOI:10.1109/tip.2024.3388974
摘要

Multi-view clustering (MVC) has attracted broad attention due to its capacity to exploit consistent and complementary information across views. This paper focuses on a challenging issue in MVC called the incomplete continual data problem (ICDP). Specifically, most existing algorithms assume that views are available in advance and overlook the scenarios where data observations of views are accumulated over time. Due to privacy considerations or memory limitations, previous views cannot be stored in these situations. Some works have proposed ways to handle this problem, but all of them fail to address incomplete views. Such an incomplete continual data problem (ICDP) in MVC is difficult to solve since incomplete information with continual data increases the difficulty of extracting consistent and complementary knowledge among views. We propose Fast Continual Multi-View Clustering with Incomplete Views (FCMVC-IV) to address this issue. Specifically, the method maintains a scalable consensus coefficient matrix and updates its knowledge with the incoming incomplete view rather than storing and recomputing all the data matrices. Considering that the given views are incomplete, the newly collected view might contain samples that have yet to appear; two indicator matrices and a rotation matrix are developed to match matrices with different dimensions. In addition, we design a three-step iterative algorithm to solve the resultant problem with linear complexity and proven convergence. Comprehensive experiments conducted on various datasets demonstrate the superiority of FCMVC-IV over the competing approaches. The code is publicly available at https://github.com/wanxinhang/FCMVC-IV.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wuxufang驳回了Rita应助
刚刚
FashionBoy应助科研通管家采纳,获得10
2秒前
深情安青应助科研通管家采纳,获得10
2秒前
英俊的铭应助科研通管家采纳,获得10
2秒前
脑洞疼应助科研通管家采纳,获得10
2秒前
打打应助科研通管家采纳,获得10
2秒前
赘婿应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
lucky完成签到,获得积分10
2秒前
大佬发布了新的文献求助10
4秒前
陳.发布了新的文献求助10
5秒前
WWY发布了新的文献求助10
6秒前
大鲨碧发布了新的文献求助20
7秒前
9秒前
端庄的如花完成签到 ,获得积分10
9秒前
10秒前
李金纹完成签到,获得积分20
11秒前
12秒前
13秒前
鳗鱼冰薇完成签到 ,获得积分10
15秒前
wns完成签到,获得积分10
15秒前
16秒前
科研通AI5应助xueshanfeihu采纳,获得20
16秒前
喝儿何完成签到,获得积分10
17秒前
清爽玉米完成签到,获得积分10
17秒前
17秒前
17秒前
19秒前
JG完成签到 ,获得积分10
20秒前
111发布了新的文献求助10
20秒前
www完成签到,获得积分10
21秒前
22秒前
英姑应助认真雅阳采纳,获得10
22秒前
everyone_woo发布了新的文献求助10
22秒前
明理丹烟发布了新的文献求助10
23秒前
大鲨碧完成签到,获得积分10
23秒前
科研通AI5应助Yvette采纳,获得10
26秒前
李昕123发布了新的文献求助10
27秒前
橘子完成签到,获得积分20
27秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Multichannel rotary joints-How they work 400
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3795227
求助须知:如何正确求助?哪些是违规求助? 3340218
关于积分的说明 10299325
捐赠科研通 3056829
什么是DOI,文献DOI怎么找? 1677185
邀请新用户注册赠送积分活动 805274
科研通“疑难数据库(出版商)”最低求助积分说明 762420