线性回归
环境科学
产品(数学)
气候学
遥感
地理
气象学
统计
数学
地质学
几何学
作者
Komi Edokossi,Shuanggen Jin,Andrés Calabia,Íñigo Molina,Usman Mazhar
标识
DOI:10.14358/pers.23-00075r2
摘要
Drought is a devastating natural hazard and exerts profound effects on both the environment and society. Predicting drought occurrences is significant in aiding decision-making and implementing effective mitigation strategies. In regions characterized by limited data availability, such as Southern Africa, the use of satellite remote sensing data promises an excellent opportunity for achieving this predictive goal. In this article, we assess the effectiveness of Soil Moisture Active Passive (SMAP) and Cyclone Global Navigation Satellite System (CYGNSS) soil moisture data in predicting drought conditions using multiple linear regression???predicted data and Global Land Data Assimilation System (GLDAS) soil moisture data.
科研通智能强力驱动
Strongly Powered by AbleSci AI