Enhancing colorectal cancer diagnosis through generative models and vision-based tactile sensing: a Sim2Real study

计算机科学 人工智能 生成模型 一般化 机器学习 概率逻辑 模式识别(心理学) 合成数据 生成语法 数学分析 数学
作者
Siddhartha Kapuria,Naruhiko Ikoma,Sandeep Chinchali,Farshid Alambeigi
标识
DOI:10.1117/12.3006550
摘要

Towards the goal of developing an informed, intuitive, and generalized artificial intelligence model for the early-stage diagnosis of Colorectal Cancer (CRC), in this work, we present a generative model-based technique to improve the training and generalization performance of machine learning classification algorithms. Through this approach, we address the challenge of acquiring sizable and well-balanced datasets within the clinical domain. Our methodology involves training generative models on already available medical data, learning the latent representations, and finally generating new synthetic samples to be used for downstream tasks. We train dedicated UNet2D-based Denoising Diffusion Probabilistic Models (DDPMs) using our custom dataset, which consists of textural images captured by our novel Vision-based Tactile Sensor (VS-TS), called Hysense. These UNet2D DDPMs are employed to generate synthetic images for each potential class. To thoroughly study the effectiveness of using synthetic images during training, we compared the performance of multiple classification models, ranging from simple to state-of-the-art approaches, with our evaluation focusing solely on real images. Specifically for our dataset, we also extend the use of dedicated UNet2D DDPMs to generate synthetic images of not just possible classes, but also other features that may be present in the image, such as whole or partial contact of sensor with polyp phantoms. Through our experimental analyses, we demonstrated that the utilization of generative models to enrich existing datasets with synthetic images leads to improved classification performance and a reduction in model biases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
完美世界应助平常心采纳,获得30
1秒前
TIWOSS完成签到,获得积分10
2秒前
李爱国应助雪山飞虹采纳,获得10
4秒前
leslie完成签到,获得积分10
4秒前
舒适香露完成签到,获得积分10
4秒前
白杨木影子被拉长完成签到,获得积分10
4秒前
7秒前
河工大nature发表者完成签到 ,获得积分10
7秒前
7秒前
bc举报dd求助涉嫌违规
8秒前
jianjianjiang完成签到,获得积分10
9秒前
雨琴发布了新的文献求助10
11秒前
11秒前
Kyle发布了新的文献求助10
12秒前
muyassar完成签到,获得积分10
12秒前
脆条完成签到,获得积分10
13秒前
Casper完成签到,获得积分10
14秒前
14秒前
14秒前
jianjianjiang发布了新的文献求助10
14秒前
15秒前
15秒前
小羊123发布了新的文献求助10
16秒前
jeremy完成签到,获得积分10
17秒前
18秒前
Kyle完成签到,获得积分10
18秒前
18秒前
19秒前
机灵柚子应助调皮觅荷采纳,获得10
19秒前
19秒前
迷路岩完成签到,获得积分10
19秒前
雨琴发布了新的文献求助10
20秒前
xiaoxiaoxiao完成签到,获得积分10
21秒前
sd3km发布了新的文献求助10
21秒前
小麦完成签到,获得积分10
23秒前
平常心发布了新的文献求助30
23秒前
邓邓邓发布了新的文献求助10
23秒前
gfdsh发布了新的文献求助10
24秒前
24秒前
25秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Izeltabart tapatansine - AdisInsight 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3814939
求助须知:如何正确求助?哪些是违规求助? 3358987
关于积分的说明 10399369
捐赠科研通 3076561
什么是DOI,文献DOI怎么找? 1689868
邀请新用户注册赠送积分活动 813339
科研通“疑难数据库(出版商)”最低求助积分说明 767608