An efficient brain tumor segmentation model based on group normalization and 3D U‐Net

规范化(社会学) 分割 计算机科学 人工智能 社会学 人类学
作者
R Chen,Yangping Lin,Yanming Ren,Hao Deng,Wenyao Cui,Wenjie Liu
出处
期刊:International Journal of Imaging Systems and Technology [Wiley]
卷期号:34 (3) 被引量:1
标识
DOI:10.1002/ima.23072
摘要

Abstract Accurate segmentation of brain tumors has a vital impact on clinical diagnosis and treatment, and good segmentation results are helpful for the treatment of this disease, which is a serious threat to human health. High‐precision segmentation of brain tumors remains a challenging task due to their diverse shapes, sizes, locations, and complex boundaries. Considering the special structure of medical brain tumor images, many researchers have proposed a brain tumor segmentation (BraTS) network based on 3D U‐Net. However, there are also problems such as insufficient receptive fields and excessive computing costs. In this paper, we propose an efficient BraTS model based on group normalization (GN) and 3D U‐Net (3D‐EffUNet). First, according to the characteristics of brain tumor images, the medical image of the whole case is input into the model, and 3D convolution layers are used to extract features and filter irrelevant information. Then, using 3D U‐Net as the main framework, an efficient convolutional module is designed for more precise processing of brain tumor features. Moreover, an efficient convolution module based on GN and an attention mechanism is introduced to reduce the complexity of the network without affecting the segmentation performance and to increase the awareness of voxels between adjacent dimensions and the local space. Finally, the decoder was used to reconstruct high‐precision BraTS information. The model is trained and tested on the BraTS2021 dataset, and the experimental results show that it can maintain good segmentation performance and greatly reduce the calculation cost.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
俏皮的海云完成签到,获得积分10
刚刚
妞妞牛传奇完成签到 ,获得积分20
刚刚
ding应助wz采纳,获得10
1秒前
胡小妹发布了新的文献求助10
1秒前
xh发布了新的文献求助10
1秒前
1秒前
朝朝发布了新的文献求助10
1秒前
Jasper应助xxx采纳,获得10
2秒前
2秒前
3秒前
4秒前
苏州河发布了新的文献求助10
4秒前
朱孟研应助zane采纳,获得20
5秒前
AIBL完成签到,获得积分10
5秒前
小爪冰凉应助坚定若雁采纳,获得10
5秒前
XXI发布了新的文献求助10
6秒前
JRZ发布了新的文献求助10
6秒前
星默发布了新的文献求助10
6秒前
DamenS发布了新的文献求助10
7秒前
Aloha完成签到,获得积分10
7秒前
美兮完成签到 ,获得积分10
7秒前
量子星尘发布了新的文献求助10
8秒前
9秒前
上善若水发布了新的文献求助10
9秒前
哈哈完成签到 ,获得积分10
9秒前
开放世界发布了新的文献求助30
9秒前
Rui_Rui发布了新的文献求助10
9秒前
补丁完成签到,获得积分10
10秒前
酷波er应助嗯嗯采纳,获得30
10秒前
知止完成签到,获得积分10
10秒前
11秒前
Walter完成签到,获得积分10
11秒前
11秒前
皮蛋瘦肉粥完成签到,获得积分10
11秒前
机器猫完成签到,获得积分10
12秒前
13秒前
13秒前
小何完成签到,获得积分10
14秒前
14秒前
wz发布了新的文献求助10
15秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 550
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5621273
求助须知:如何正确求助?哪些是违规求助? 4706037
关于积分的说明 14934680
捐赠科研通 4765222
什么是DOI,文献DOI怎么找? 2551555
邀请新用户注册赠送积分活动 1514048
关于科研通互助平台的介绍 1474746