CMLFormer: CNN and Multiscale Local-Context Transformer Network for Remote Sensing Images Semantic Segmentation

计算机科学 分割 人工智能 图像分割 计算机视觉 比例(比率) 变压器 遥感 模式识别(心理学) 地理 地图学 物理 电压 量子力学
作者
Honglin Wu,Min Zhang,Peng Huang,Wenlong Tang
出处
期刊:IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:17: 7233-7241 被引量:9
标识
DOI:10.1109/jstars.2024.3375313
摘要

The characteristics of remote sensing images, such as complex ground objects, rich feature details, large intra-class variance and small inter-class variance, usually require deep learning semantic segmentation methods to have strong feature learning representation ability. Due to the limitation of convolutional operation, Convolutional Neural Networks (CNNs) are good at capturing local details, but perform poorly at modelling long-range dependencies. Transformers rely on multi-head selfattention mechanisms to extract global contextual information, but it usually leads to high complexity. Therefore, this paper proposes CNN and Multi-scale Local-context Transformer network (CMLFormer), a novel encoder-decoder structured network for remote sensing image semantic segmentation. Specifically, for the features extracted by the lightweight ResNet18 encoder, we design a transformer decoder based on Multi-scale Local-context Transform Block (MLTB) to enhance the ability of feature learning. By using a self-attention mechanism with non-overlapping windows and with the help of multi-scale horizontal and vertical interactive stripe convolution, MLTB is able to capture both local feature information and global feature information at different scales with low complexity. Additionally, the Feature Enhanced Module (FEM) is introduced into the encoder to further facilitate the learning of global and local information. Experimental results show that our proposed CMLFormer exhibits excellent performance on the Vaihingen and Potsdam datasets. The code is available at https://github.com/DrWuHonglin/CMLFormer .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
神圣先知完成签到,获得积分10
刚刚
冰魂应助fhh采纳,获得20
刚刚
三杠完成签到 ,获得积分10
1秒前
活泼蜡烛完成签到,获得积分10
1秒前
苗秋实完成签到,获得积分10
1秒前
锂安完成签到,获得积分10
2秒前
Emma完成签到 ,获得积分10
2秒前
蟹蟹发布了新的文献求助10
2秒前
wind2631完成签到,获得积分10
2秒前
飞想思完成签到,获得积分10
2秒前
昵称完成签到,获得积分10
3秒前
细腻的沂完成签到,获得积分10
3秒前
3秒前
自己发布了新的文献求助10
5秒前
5秒前
诸葛凤雏完成签到,获得积分10
6秒前
Sci完成签到,获得积分10
6秒前
ilaveu完成签到,获得积分10
6秒前
飞天小女警完成签到,获得积分10
6秒前
和平发展完成签到,获得积分10
8秒前
怕黑的思雁完成签到 ,获得积分10
8秒前
溪影完成签到,获得积分0
10秒前
多余完成签到,获得积分10
11秒前
Selonfer完成签到,获得积分10
11秒前
杨抠脚完成签到,获得积分10
11秒前
a3979107完成签到,获得积分10
11秒前
彪壮的美女完成签到,获得积分10
11秒前
billevans完成签到,获得积分10
12秒前
zhanghan完成签到,获得积分10
12秒前
朱凯洋发布了新的文献求助10
12秒前
cyh时代完成签到 ,获得积分10
12秒前
胡图图完成签到,获得积分10
13秒前
tzj完成签到 ,获得积分10
13秒前
fhbsdufh完成签到,获得积分10
14秒前
孝艺完成签到 ,获得积分10
14秒前
平常的问雁完成签到 ,获得积分10
15秒前
整齐醉冬完成签到,获得积分10
15秒前
cdercder应助东东采纳,获得10
16秒前
轩然完成签到,获得积分20
16秒前
着急的小松鼠完成签到,获得积分10
16秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Pharmacological profile of sulodexide 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3804332
求助须知:如何正确求助?哪些是违规求助? 3349165
关于积分的说明 10342042
捐赠科研通 3065235
什么是DOI,文献DOI怎么找? 1682994
邀请新用户注册赠送积分活动 808622
科研通“疑难数据库(出版商)”最低求助积分说明 764626