RPM: RF-based Pose Machines

计算机科学 无线电频率 人工智能 快照(计算机存储) 计算机视觉 雷达 特征(语言学) 模式识别(心理学) 电信 语言学 操作系统 哲学
作者
Chunyang Xie,Dongheng Zhang,Zhi Wu,Cong Yu,Yang Hu,Yan Chen
出处
期刊:IEEE Transactions on Multimedia [Institute of Electrical and Electronics Engineers]
卷期号:26: 637-649 被引量:8
标识
DOI:10.1109/tmm.2023.3268376
摘要

Radio-frequency (RF) based human sensing technologies, due to their great practical value in various applications and privacy-preserving nature, have gained tremendous attention in recent years. However, without fully exploiting the characteristics of radio signals, the performance of existing methods are still limited. First, RF features of the moving human body have different representations in dimensions such as channel and scale, which is challenging when performing feature fusion. Besides, the human body is specularly reflective with respect to the radar, which means the human body cannot be fully captured by a single RF snapshot. Therefore, the radar signal reflected by the human body is sparse and incomplete, which is difficult to extract high-quality features for 3D human pose estimation. In this paper, we present the RF-based Pose Machines (RPM), a novel framework which can generate 3D skeletons from RF signals. Considering the characteristics of RF signals, RPM includes several modules to overcome the challenges. Firstly, a Feature Fusion Network (FFN) is designed to effectively fuse radio signals from horizontal and vertical planes based on the channels' correlation and maintain high-quality feature via a multi-scale fusion block. A Spatio-Temporal Attention network is then designed to reconstruct 3D skeletons from the sparse and incomplete RF signals. Specifically, a spatial attention module is designed to model non-local relationships among joints and reconstruct body parts that a single RF snapshot cannot capture. Afterwards, a temporal attention module is proposed to refine 3D pose based on temporal coherency learned from frame queries. To evaluate the performance of our RPM framework, we construct a large-scale dataset of synchronized 3d skeletons and RF signals, RFSkeleton3D. Our experimental results show that RPM locates 3D key points of the human body with an average error of $5.71 cm$ and maintains its performance in new environments with occlusion or bad illumination. The dataset and codes will be made in public.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
vikoel完成签到,获得积分10
刚刚
刚刚
Luna完成签到,获得积分10
1秒前
啦啦啦啦啦完成签到,获得积分10
1秒前
1秒前
nini发布了新的文献求助10
2秒前
天天快乐应助咿呀咿呀采纳,获得10
2秒前
2秒前
苗苗完成签到,获得积分10
2秒前
2秒前
2秒前
指导灰完成签到 ,获得积分10
2秒前
寻风完成签到,获得积分10
3秒前
清风完成签到,获得积分10
3秒前
3秒前
谨慎的雍完成签到,获得积分10
3秒前
小二郎应助Gakay采纳,获得10
3秒前
dax大雄完成签到 ,获得积分10
3秒前
超男发布了新的文献求助10
3秒前
抠脚大汉发布了新的文献求助10
4秒前
无花果应助ooo娜采纳,获得10
4秒前
4秒前
4秒前
5秒前
5秒前
科研废物完成签到,获得积分10
5秒前
传奇3应助neiltang采纳,获得10
5秒前
Lucas应助666采纳,获得10
6秒前
年轻灯泡发布了新的文献求助10
6秒前
6秒前
顾矜应助执念采纳,获得10
7秒前
tramp应助自由飞翔采纳,获得20
8秒前
8秒前
搜集达人应助defupai采纳,获得10
8秒前
小马甲应助凡凡没烦恼采纳,获得10
8秒前
9秒前
大白不白发布了新的文献求助10
9秒前
9秒前
dc123456完成签到,获得积分10
9秒前
ttt发布了新的文献求助10
10秒前
高分求助中
Africanfuturism: African Imaginings of Other Times, Spaces, and Worlds 3000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 2000
The Oxford Encyclopedia of the History of Modern Psychology 2000
Synthesis of 21-Thioalkanoic Acids of Corticosteroids 1000
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 1000
Structural Equation Modeling of Multiple Rater Data 700
 Introduction to Comparative Public Administration Administrative Systems and Reforms in Europe, Third Edition 3rd edition 590
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3886200
求助须知:如何正确求助?哪些是违规求助? 3428338
关于积分的说明 10759903
捐赠科研通 3153208
什么是DOI,文献DOI怎么找? 1740953
邀请新用户注册赠送积分活动 840399
科研通“疑难数据库(出版商)”最低求助积分说明 785378