Global leaf‐trait mapping based on optimality theory

特质 比叶面积 生态学 植物功能类型 生态系统 生物 气候变化 光合作用 计算机科学 植物 程序设计语言
作者
Ning Dong,Benjamin Dechant,Han Wang,Ian J. Wright,Iain Colin Prentice
出处
期刊:Global Ecology and Biogeography [Wiley]
卷期号:32 (7): 1152-1162 被引量:2
标识
DOI:10.1111/geb.13680
摘要

Abstract Aim Leaf traits are central to plant function, and key variables in ecosystem models. However recently published global trait maps, made by applying statistical or machine‐learning techniques to large compilations of trait and environmental data, differ substantially from one another. This paper aims to demonstrate the potential of an alternative approach, based on eco‐evolutionary optimality theory, to yield predictions of spatio‐temporal patterns in leaf traits that can be independently evaluated. Innovation Global patterns of community‐mean specific leaf area (SLA) and photosynthetic capacity ( V cmax ) are predicted from climate via existing optimality models. Then leaf nitrogen per unit area ( N area ) and mass ( N mass ) are inferred using their (previously derived) empirical relationships to SLA and V cmax . Trait data are thus reserved for testing model predictions across sites. Temporal trends can also be predicted, as consequences of environmental change, and compared to those inferred from leaf‐level measurements and/or remote‐sensing methods, which are an increasingly important source of information on spatio‐temporal variation in plant traits. Main conclusions Model predictions evaluated against site‐mean trait data from > 2,000 sites in the Plant Trait database yielded R 2 = 73% for SLA, 38% for N mass and 28% for N area . Declining species‐level N mass , and increasing community‐level SLA, have both been recently reported and were both correctly predicted. Leaf‐trait mapping via optimality theory holds promise for macroecological applications, including an improved understanding of community leaf‐trait responses to environmental change.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
王卫完成签到,获得积分10
1秒前
empty发布了新的文献求助10
1秒前
jinxiao完成签到,获得积分20
1秒前
2秒前
科目三应助博修采纳,获得10
3秒前
鹂鹂复霖霖完成签到,获得积分10
3秒前
悦耳的亦云完成签到,获得积分20
7秒前
7秒前
传奇3应助dudu采纳,获得10
12秒前
14秒前
西瓜味的水星完成签到,获得积分10
16秒前
Cecilia_kou完成签到 ,获得积分10
17秒前
星夜疏爱美食完成签到 ,获得积分10
18秒前
songlf23发布了新的文献求助10
20秒前
21秒前
21秒前
JIANG发布了新的文献求助30
22秒前
哈哈哈完成签到,获得积分10
23秒前
24秒前
旷野发布了新的文献求助10
24秒前
哈哈哈发布了新的文献求助10
26秒前
dudu发布了新的文献求助10
26秒前
完美世界应助娇气的妙之采纳,获得10
26秒前
28秒前
wise111发布了新的文献求助10
29秒前
m李完成签到 ,获得积分10
29秒前
博修发布了新的文献求助10
33秒前
烟花应助chancy采纳,获得10
34秒前
白金之星完成签到 ,获得积分10
36秒前
XY完成签到,获得积分10
40秒前
40秒前
田様应助JIANG采纳,获得30
41秒前
42秒前
42秒前
赵雨轩完成签到 ,获得积分10
43秒前
NexusExplorer应助哈哈哈采纳,获得10
44秒前
jsdiohfsiodhg完成签到,获得积分10
46秒前
qiulong发布了新的文献求助10
46秒前
46秒前
47秒前
高分求助中
Basic Discrete Mathematics 1000
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3799181
求助须知:如何正确求助?哪些是违规求助? 3344881
关于积分的说明 10322160
捐赠科研通 3061343
什么是DOI,文献DOI怎么找? 1680214
邀请新用户注册赠送积分活动 806919
科研通“疑难数据库(出版商)”最低求助积分说明 763451