Incremental Learning Based on Granular Ball Rough Sets for Classification in Dynamic Mixed-Type Decision System

粒度计算 计算机科学 粗集 可扩展性 球(数学) 人工智能 水准点(测量) 机器学习 数据挖掘 数学 数据库 大地测量学 数学分析 地理
作者
Qinghua Zhang,Chengying Wu,Shuyin Xia,Fan Zhao,Man Gao,Yunlong Cheng,Guoyin Wang
出处
期刊:IEEE Transactions on Knowledge and Data Engineering [Institute of Electrical and Electronics Engineers]
卷期号:35 (9): 9319-9332 被引量:29
标识
DOI:10.1109/tkde.2023.3237833
摘要

Granular computing, a new paradigm for solving large-scale and complex problems, has made significant progresses in knowledge discovery. Granular ball computing (GBC) is a novel granular computing method, which can rapidly generate scalable and robust information granules, that is, granular balls. However, a comprehensive index for measuring the performance of a granular ball does not exist. Furthermore, GBC lacks a mechanism to deal with dynamic decision systems. Therefore, in this study, the quality index of a granular ball is first formulated. Next, with this index, a novel granular ball rough sets model (GBRS) based on GBC is proposed. GBRS is more conducive to learning knowledge from uncertain datasets and more suited to incremental learning than the latest granular ball neighborhood rough sets model based on GBC. Subsequently, an incremental mechanism is introduced into GBRS, and two incremental learning models are developed for objects increasing in stream patterns and batch patterns, respectively. In the incremental learning process, three patterns of granular balls, that is, update, fusion, and split, were well studied when a set of objects was added to the decision system. Finally, to verify the effectiveness and efficiency, we apply GBRS and these two incremental learning models into classification tasks. Compared with four current state-of-the-art classification methods based on granular computing and four classical classifiers in machine learning, the proposed classifiers in this paper achieve higher classification accuracy as well as better efficiency on benchmark datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
震动的储发布了新的文献求助20
1秒前
JMR123发布了新的文献求助10
1秒前
3秒前
表哥yd完成签到 ,获得积分10
3秒前
3秒前
发嗲的雨筠完成签到,获得积分10
3秒前
深情安青应助ilikefoc采纳,获得10
3秒前
勤奋的访文完成签到 ,获得积分10
4秒前
友好白凡发布了新的文献求助10
5秒前
加贝完成签到,获得积分10
5秒前
胡大笑哈哈哈完成签到 ,获得积分10
6秒前
852应助努力的学采纳,获得10
6秒前
muli发布了新的文献求助20
7秒前
李志华发布了新的文献求助10
8秒前
神外王001完成签到 ,获得积分10
9秒前
QIUQIU0916完成签到 ,获得积分10
10秒前
10秒前
11秒前
11秒前
友好白凡完成签到,获得积分10
11秒前
12秒前
哈哈完成签到,获得积分10
12秒前
myc完成签到 ,获得积分20
12秒前
科研通AI2S应助JMR123采纳,获得10
13秒前
13秒前
重要的天寿完成签到 ,获得积分10
14秒前
14秒前
Miracle_wh完成签到 ,获得积分10
14秒前
nn驳回了orixero应助
15秒前
16秒前
LBJBowen23发布了新的文献求助10
16秒前
夔kk发布了新的文献求助10
17秒前
文静的巨人完成签到 ,获得积分10
17秒前
CipherSage应助每天100次采纳,获得10
17秒前
Ava应助蒙蒙采纳,获得10
17秒前
Ava应助初遇之时最暖采纳,获得10
18秒前
努力的学发布了新的文献求助10
18秒前
kls发布了新的文献求助10
18秒前
希望天下0贩的0应助孙雯采纳,获得10
18秒前
jazzmantan发布了新的文献求助50
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 901
Item Response Theory 600
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5425849
求助须知:如何正确求助?哪些是违规求助? 4539593
关于积分的说明 14169175
捐赠科研通 4457325
什么是DOI,文献DOI怎么找? 2444499
邀请新用户注册赠送积分活动 1435415
关于科研通互助平台的介绍 1412871