亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A multi-arm robot system for efficient apple harvesting: Perception, task plan and control

机器人 任务(项目管理) 工作区 计算机科学 机械臂 领域(数学) 人工智能 异步通信 实时动态 实时计算 模拟 控制工程 工程类 全球定位系统 系统工程 全球导航卫星系统应用 计算机网络 电信 纯数学 数学
作者
Tao Li,Feng Xie,Zhuoqun Zhao,Hui Zhao,Xin Guo,Qingchun Feng
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:211: 107979-107979 被引量:72
标识
DOI:10.1016/j.compag.2023.107979
摘要

Robot harvesting has emerged as an urgent need for apple industry due to a sharp decline in agricultural labor. In the field of harvesting robots, the use of multiple robotic arms to improve operational efficiency and promote industrial applications has gained significant attention. Despite the significant progress made in multi-arm harvesting robots in recent years, their widespread application in orchard production is hindered by insufficient efficiency of operation and the accuracy of fruit positioning. This paper focuses on the precise perception and multi-arm collaborative control issues of harvesting robots, and proposes a multi-arm apple harvesting robot system. Firstly, the paper introduces the hardware and software integration method and kinematic configuration of the robot, and presents its workspace division and asynchronous sequential operation mode. Secondly, the paper proposes a stereo vision fruit recognition and localization algorithm based on multi-task deep learning to enhance the accuracy of apple fruit positioning and a method of combining multiple perspectives to acquire a global fruit map is introduced. Finally, the paper presents a multi-arm task planning method based on the Markov game framework to optimize the target harvesting order of each arm and improve the collaboration efficiency. The effectiveness of the robot and its perception and control methods are verified through multiple field experiments in orchards. The field trials showed that the proposed vision system reduces the median locating error of the robot system by up to 44.43%; the proposed task planning algorithm can reduce the average cycle time by 33.3% compared to the heuristic-based algorithm, and time taken for optimizing task planning ranged from 1.14 s to 1.21 s; and the robot’s harvest success rate varied from 71.28% to 80.45%, and the average cycle time ranged from 5.8 s to 6.7 s.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Jodie发布了新的文献求助10
6秒前
Komorebi完成签到 ,获得积分10
9秒前
9秒前
发嗲的琦完成签到 ,获得积分10
10秒前
10秒前
懵懂的翼发布了新的文献求助10
11秒前
dcy发布了新的文献求助10
12秒前
贰壹完成签到 ,获得积分10
15秒前
21秒前
懵懂的翼完成签到,获得积分10
21秒前
111111zx111发布了新的文献求助10
28秒前
28秒前
三叔完成签到,获得积分0
28秒前
暴躁的橘子完成签到 ,获得积分10
29秒前
糯糯汤圆完成签到,获得积分20
33秒前
34秒前
我爱乒乓球完成签到,获得积分10
41秒前
新酱不爱吃青椒完成签到 ,获得积分10
42秒前
45秒前
Shuangzizi发布了新的文献求助20
46秒前
慕青应助TIPHA采纳,获得10
48秒前
在水一方应助喜悦的如娆采纳,获得10
50秒前
52秒前
55秒前
1212完成签到,获得积分20
55秒前
58秒前
1212发布了新的文献求助10
58秒前
1分钟前
科研通AI6应助Charlie采纳,获得10
1分钟前
TIPHA发布了新的文献求助10
1分钟前
1分钟前
1分钟前
转转王转转完成签到,获得积分10
1分钟前
许大脚完成签到 ,获得积分10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
顾矜应助科研通管家采纳,获得10
1分钟前
qqpp发布了新的文献求助30
1分钟前
cytheria完成签到 ,获得积分10
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Treatise on Geochemistry (Third edition) 1600
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
List of 1,091 Public Pension Profiles by Region 981
医养结合概论 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5458857
求助须知:如何正确求助?哪些是违规求助? 4564838
关于积分的说明 14297006
捐赠科研通 4489876
什么是DOI,文献DOI怎么找? 2459381
邀请新用户注册赠送积分活动 1449070
关于科研通互助平台的介绍 1424550