Predictive models for flexible pavement fatigue cracking based on machine learning

随机森林 克里金 机器学习 支持向量机 特征选择 计算机科学 人工智能 人工神经网络 预测建模 特征(语言学) 决策树 均方误差 回归 特征工程 数据挖掘 深度学习 统计 数学 哲学 语言学
作者
Ali Alnaqbi,Waleed Zeiada,Ghazi G. Al-Khateeb,Abdulmalek A. Abttan,Muamer Abuzwidah
出处
期刊:Transportation engineering [Elsevier BV]
卷期号:16: 100243-100243 被引量:19
标识
DOI:10.1016/j.treng.2024.100243
摘要

Pavement performance prediction is crucial for ensuring the longevity and safety of road networks. In our extensive study, we employ a diverse array of techniques to enhance fatigue performance models in flexible pavements. The methodology begins with Random Forest feature selection, identifying the top 15 critical variables that significantly impact pavement performance. These variables form the basis for subsequent model development. Our investigation into model performance indicates the superiority of advanced machine learning methods such as Regression Trees (RT), Gaussian Process Regression (GPR), Support Vector Machines (SVM), Ensemble Trees (ET), and Artificial Neural Networks (ANN) over traditional linear regression methods. This consistent outperformance underscores their potential to reshape forecasting accuracy. Through extensive model optimization, we reveal robust performance across both complete and selected feature sets, emphasizing the importance of meticulous feature selection in enhancing forecast accuracy. The accuracy of our best optimized machine learning model is highlighted by its Performance Measurement metrics: RMSE of 22.416, MSE of 502.46, R-squared of 0.80848, and MAE of 8.9958. Additionally, comparative analysis with previous empirical models demonstrates that our best optimized machine learning model outperforms existing empirical models. This work underscores the significance of feature curation in pavement performance prediction, highlighting the potential of sophisticated modeling methodologies. Embracing cutting-edge technologies facilitates data-driven decisions, ultimately contributing to the development of more robust road networks, enhancing safety, and prolonging lifespan.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
3秒前
4秒前
xiaosun完成签到,获得积分10
6秒前
听风完成签到,获得积分10
6秒前
6秒前
7秒前
积极以云完成签到,获得积分10
7秒前
changfox完成签到,获得积分10
7秒前
CipherSage应助cjh采纳,获得10
9秒前
xiaosun发布了新的文献求助10
10秒前
甜蜜发带完成签到 ,获得积分10
11秒前
勤恳的不二完成签到,获得积分10
11秒前
大模型应助T拐拐采纳,获得10
11秒前
li发布了新的文献求助30
12秒前
乐观小之完成签到,获得积分0
14秒前
14秒前
香蕉寒梅完成签到,获得积分10
15秒前
彭于晏应助富强民主采纳,获得10
15秒前
轻语完成签到 ,获得积分10
17秒前
研友_8DWkVZ完成签到,获得积分10
17秒前
18秒前
19秒前
20秒前
乐乐应助Luna采纳,获得10
21秒前
24秒前
上官若男应助酷炫紫萍采纳,获得10
25秒前
Hello应助xiaosun采纳,获得10
26秒前
西行龟完成签到,获得积分10
27秒前
T拐拐发布了新的文献求助10
27秒前
科研怪人完成签到 ,获得积分10
28秒前
小马甲应助心灵美的花卷采纳,获得10
28秒前
29秒前
拼命077发布了新的文献求助10
29秒前
29秒前
chenshi0515完成签到 ,获得积分10
29秒前
BruceQ完成签到,获得积分10
30秒前
zpj完成签到 ,获得积分10
30秒前
你爸爸完成签到,获得积分10
30秒前
林洁佳完成签到,获得积分10
30秒前
高分求助中
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
E-commerce live streaming impact analysis based on stimulus-organism response theory 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3801189
求助须知:如何正确求助?哪些是违规求助? 3346865
关于积分的说明 10330761
捐赠科研通 3063197
什么是DOI,文献DOI怎么找? 1681450
邀请新用户注册赠送积分活动 807586
科研通“疑难数据库(出版商)”最低求助积分说明 763729