Multi-UAV formation control via deep reinforcement learning and multi-step experience storage in dense obstacle environments

作者
Jian Gu,Yin Wang
出处
期刊:Transactions of the Institute of Measurement and Control [SAGE]
标识
DOI:10.1177/01423312251387166
摘要

This paper presents a deep reinforcement learning (DRL)-based Multi-Agent Control for Formation and Obstacle Avoidance (MACFOA) algorithm to solve collaborative formation and obstacle avoidance decision-making for unmanned aerial vehicle (UAV) systems in dense obstacle environments. The algorithm primarily addresses the coupled strategy update challenges that emerge from simultaneous obstacle avoidance and formation control. A distributed control framework is employed to enable efficient formation and obstacle avoidance for UAV swarms in densely obstructed environments. To address the inefficiency and instability of strategy update problems due to sparse data samples in DRL formation control algorithms, an enhanced multi-step continuous experience replay mechanism is introduced. This mechanism stores and leverages experience data from multiple consecutive time steps, linking contextual information while fully accounting for temporal dependencies, ensuring continuous dynamic policy optimization throughout the training process. Comparative simulations were carried out to evaluate the performances of the proposed approach in terms of efficiency and flexibility. The results have shown that employing the MACFOA-MULT4 algorithm, which utilizes a four-step experience replay strategy, leads to optimal performance, significantly enhancing both training efficiency and stability. Compared to MACFOA, it reduces root mean square error (RMSE) by 38.56% and improves by 25.17% over the multi-agent recurrent deterministic policy gradient (MADRPG). In dynamic simulations on the AirSim platform, the algorithm demonstrated strong adaptability and stability, especially in high-obstacle-density environments. Its superior performance in control stability and task efficiency highlights the effectiveness and advantages of the proposed control strategy.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
羊咩咩发布了新的文献求助10
1秒前
朴实的河马完成签到,获得积分10
1秒前
1秒前
1秒前
烦烦烦发布了新的文献求助10
1秒前
蓝胖子发布了新的文献求助10
2秒前
国子完成签到,获得积分10
2秒前
2秒前
清爽的曼易完成签到 ,获得积分10
3秒前
希望天下0贩的0应助OMIT采纳,获得10
3秒前
2滴水发布了新的文献求助10
4秒前
4秒前
4秒前
sssxylyy完成签到,获得积分10
4秒前
泱泱完成签到,获得积分10
5秒前
乐乐应助狂暴的蜗牛0713采纳,获得10
5秒前
小芋发布了新的文献求助20
5秒前
xielunwen发布了新的文献求助10
7秒前
852应助1203采纳,获得10
8秒前
10 g发布了新的文献求助10
8秒前
慕青应助nnn采纳,获得10
8秒前
9秒前
科研老兵发布了新的文献求助20
9秒前
9秒前
9秒前
10秒前
KK发布了新的文献求助10
11秒前
科研通AI6应助Regulus采纳,获得10
11秒前
11秒前
kingwill发布了新的文献求助10
11秒前
11秒前
蓝胖子完成签到,获得积分10
12秒前
无糖的问题完成签到,获得积分20
13秒前
wt发布了新的文献求助10
13秒前
Murmansk发布了新的文献求助10
13秒前
spike完成签到,获得积分10
13秒前
无极微光应助小芋采纳,获得20
14秒前
开心小猪发布了新的文献求助10
14秒前
星星发布了新的文献求助10
15秒前
余地完成签到,获得积分10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
Pediatric Nutrition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5546683
求助须知:如何正确求助?哪些是违规求助? 4632489
关于积分的说明 14627325
捐赠科研通 4574069
什么是DOI,文献DOI怎么找? 2508092
邀请新用户注册赠送积分活动 1484663
关于科研通互助平台的介绍 1455826