Built environment disparities are amplified during extreme weather recovery

作者
Tianyuan Huang,Chad Zanocco,Zhecheng Wang,J. I. Hwang,Ram Rajagopal
出处
期刊:Nature [Springer Nature]
卷期号:648 (8093): 349-356
标识
DOI:10.1038/s41586-025-09804-3
摘要

Extreme weather events such as hurricanes and floods cause increasing damage to communities, leading to substantial economic losses and displacement of populations1-6. Previous research suggests that there are disparities in the resilience capacity of neighbourhoods, predicting a recovery mechanism of either segmented withdrawal or reinforcement across different neighbourhood groups7-12. Assessing these hypotheses and investigating if-and to what extent-neighbourhood built environments recover at scale has been difficult because previous measures have relied on aggregated survey data1,7,9-14. Here we construct a building-level disaster recovery dataset covering 2,195 census tracts spanning 16 states and across 12 extreme weather events in the USA from 2007 to 2023 using historical street view imagery and multimodal machine learning. Our analysis shows that in the aftermath of extreme weather events, lower-income neighbourhoods are less likely to rebuild and do not return to their pre-disaster state, whereas higher-income areas rebuild and tend to improve compared with their pre-disaster state, highlighting increasing disparities in their built environments. We further investigate those disparities by examining the deployment of disaster recovery assistance and insurance policies, and identify a resource gap for lower-income neighbourhoods that may explain unequal community responses to extreme weather events. Our findings demonstrate the value of analysing neighbourhood recovery trajectories at a higher resolution and larger scale to inform responsive policy designs, and suggest the importance of restructuring the recovery financial assistance framework to promote more climate resilient communities.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小孙同学完成签到,获得积分10
刚刚
夏雪儿完成签到,获得积分10
刚刚
小蘑菇应助漱玉采纳,获得10
刚刚
失眠的耳机完成签到,获得积分10
1秒前
11完成签到,获得积分10
1秒前
1秒前
Darcy完成签到,获得积分10
2秒前
健壮的冰岚完成签到,获得积分10
2秒前
勤劳初雪发布了新的文献求助30
2秒前
合适的话三个火完成签到,获得积分10
2秒前
隐形曼青应助chenzao采纳,获得10
2秒前
果汁完成签到,获得积分10
3秒前
小孙同学发布了新的文献求助10
4秒前
4秒前
4秒前
sandy完成签到,获得积分20
4秒前
4秒前
镁铝硅磷完成签到,获得积分10
5秒前
木可可可发布了新的文献求助10
5秒前
liwhao完成签到,获得积分10
5秒前
5秒前
6秒前
6秒前
小白鸽发布了新的文献求助10
6秒前
6秒前
7秒前
小马甲应助gs采纳,获得10
7秒前
orixero应助钇铯采纳,获得10
7秒前
Akim应助11采纳,获得10
7秒前
caozhi发布了新的文献求助10
7秒前
7秒前
carry发布了新的文献求助10
8秒前
CipherSage应助严美娜采纳,获得10
8秒前
科研通AI6应助qiuqiuqiu采纳,获得10
8秒前
8秒前
9秒前
量子星尘发布了新的文献求助10
9秒前
JeffLee发布了新的文献求助50
9秒前
土豆··完成签到,获得积分10
9秒前
啵啵虎完成签到,获得积分10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Cummings Otolaryngology Head and Neck Surgery 8th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5756869
求助须知:如何正确求助?哪些是违规求助? 5506890
关于积分的说明 15385077
捐赠科研通 4894638
什么是DOI,文献DOI怎么找? 2632671
邀请新用户注册赠送积分活动 1580596
关于科研通互助平台的介绍 1536510