Applying machine learning to understand the properties of biomass carbon materials in supercapacitors

超级电容器 电容 材料科学 碳纤维 感知器 相关系数 电解质 体积热力学 计算机科学 生物系统 人工神经网络 机器学习 复合材料 热力学 电极 化学 物理 物理化学 生物 复合数
作者
Anif Jamaluddin,Dewanto Harjunowibowo,Sri Budiawanti,Nughthoh Arfawi Kurdhi,SUTARSIS sutarsis,Daphne Teck Ching Lai,S. Ramesh
出处
期刊:Energy Reports [Elsevier]
卷期号:10: 3125-3132 被引量:16
标识
DOI:10.1016/j.egyr.2023.09.099
摘要

Carbon is a fundamental material in developing electrochemical double-layer capacitors (EDLCs), also known as supercapacitors. Many studies have proven the impact of various carbon material properties, such as surface area, pore volume, and chemical surface composition, on the specific capacitance of supercapacitors (EDLCs). However, research endeavors to comprehensively evaluate the contribution of these material properties in correlation with experimental parameters, such as electrolyte concentration, voltage window, and current density, are scarce. This study aimed to employ machine learning algorithms to comprehend the interdependence between the properties of biomass-based carbon and the aforementioned experimental parameters with the capacitance of EDLCs. Four models of the machine learning algorithms were utilized in this study, including linear regression (LR), M5-Rules, Random Tree (RT), and Multi-Layer Perceptron (MLP), to determine the most suitable algorithm for analyzing and predicting the capacitance of EDLCs. The results revealed that the MLP model exhibited the highest determination correlation coefficient (R) of 0.871 with a Mean Absolute Error (MAE) of 45.069 F/g. Besides, the study utilized a machine learning correlation attribute model and observed that the supercapacitor's surface area and pore volume demonstrated significant correlations with the same correlation ratio of 0.4. In conclusion, these findings emphasize the importance of considering surface area and pore volume in developing and optimizing supercapacitors. Finally, this study adds knowledge in supercapacitors and provides valuable insights for designing and developing high-performance energy storage devices.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
学术蛀虫发布了新的文献求助20
1秒前
虚拟的沅发布了新的文献求助10
1秒前
1秒前
搞怪白秋完成签到,获得积分10
2秒前
jenny完成签到,获得积分10
2秒前
2秒前
酷波er应助晴空采纳,获得10
3秒前
4秒前
4秒前
DamenS发布了新的文献求助10
4秒前
123发布了新的文献求助10
4秒前
4秒前
masterwjc完成签到,获得积分10
5秒前
shiruimin完成签到,获得积分10
5秒前
minnie完成签到,获得积分20
5秒前
5秒前
樟脑丸完成签到,获得积分10
5秒前
汉堡包应助wangxiaoli0991采纳,获得10
6秒前
dyh驳回了浮游应助
6秒前
郑朗逸完成签到,获得积分10
6秒前
dddddd发布了新的文献求助10
7秒前
乐观忆之完成签到 ,获得积分10
7秒前
上官若男应助Daty采纳,获得10
7秒前
Krank发布了新的文献求助10
8秒前
wangxiaoli0991完成签到 ,获得积分10
9秒前
9秒前
9秒前
10秒前
李爱国应助乔啡采纳,获得10
11秒前
12秒前
12秒前
四体不勤发布了新的文献求助10
12秒前
酶没美镁完成签到,获得积分0
12秒前
十药九茯苓完成签到,获得积分10
12秒前
goose完成签到,获得积分10
12秒前
柯柯驳回了慕青应助
13秒前
13秒前
SHURT发布了新的文献求助10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
Stop Talking About Wellbeing: A Pragmatic Approach to Teacher Workload 800
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Terminologia Embryologica 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5618656
求助须知:如何正确求助?哪些是违规求助? 4703567
关于积分的说明 14922777
捐赠科研通 4758019
什么是DOI,文献DOI怎么找? 2550151
邀请新用户注册赠送积分活动 1512998
关于科研通互助平台的介绍 1474379