Towards real-time EPID-based 3D in vivo dosimetry for IMRT with Deep Neural Networks: A feasibility study

剂量学 医学物理学 人工神经网络 医学 核医学 计算机科学 人工智能
作者
Juliana Martins,Joscha Maier,Chiara Gianoli,Sebastian Neppl,G. Dedes,Abdulaziz Alhazmi,Stella Veloza,Michael Reiner,Claus Belka,Marc Kachelrieß,Katia Parodi
出处
期刊:Physica Medica [Elsevier BV]
卷期号:114: 103148-103148 被引量:5
标识
DOI:10.1016/j.ejmp.2023.103148
摘要

We investigate the potential of the Deep Dose Estimate (DDE) neural network to predict 3D dose distributions inside patients with Monte Carlo (MC) accuracy, based on transmitted EPID signals and patient CTs. The network was trained using as input patient CTs and first-order dose approximations (FOD). Accurate dose distributions (ADD) simulated with MC were given as training targets. 83 pelvic CTs were used to simulate ADDs and respective EPID signals for subfields of prostate IMRT plans (gantry at 0∘). FODs were produced as backprojections from the EPID signals. 581 ADD-FOD sets were produced and divided into training and test sets. An additional dataset simulated with gantry at 90∘ (lateral set) was used for evaluating the performance of the DDE at different beam directions. The quality of the FODs and DDE-predicted dose distributions (DDEP) with respect to ADDs, from the test and lateral sets, was evaluated with gamma analysis (3%,2 mm). The passing rates between FODs and ADDs were as low as 46%, while for DDEPs the passing rates were above 97% for the test set. Meaningful improvements were also observed for the lateral set. The high passing rates for DDEPs indicate that the DDE is able to convert FODs into ADDs. Moreover, the trained DDE predicts the dose inside a patient CT within 0.6 s/subfield (GPU), in contrast to 14 h needed for MC (CPU-cluster). 3D in vivo dose distributions due to clinical patient irradiation can be obtained within seconds, with MC-like accuracy, potentially paving the way towards real-time EPID-based in vivo dosimetry.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
范范范完成签到,获得积分10
2秒前
酷波er应助天津中医药峰采纳,获得10
2秒前
4秒前
安安完成签到 ,获得积分10
4秒前
Claire完成签到 ,获得积分10
6秒前
今后应助wang采纳,获得10
6秒前
赘婿应助蒙太奇采纳,获得10
7秒前
Leo发布了新的文献求助10
8秒前
11秒前
仿真小学生完成签到,获得积分10
12秒前
ding完成签到 ,获得积分10
12秒前
WDK完成签到,获得积分10
14秒前
菠萝完成签到 ,获得积分10
16秒前
高高的山兰完成签到 ,获得积分10
18秒前
科研通AI5应助昭谏采纳,获得10
19秒前
dg_fisher给dg_fisher的求助进行了留言
19秒前
乐乐应助小天采纳,获得10
21秒前
shiwo110完成签到,获得积分10
27秒前
28秒前
今天只做一件事应助WDK采纳,获得10
29秒前
威武的雨筠完成签到 ,获得积分10
32秒前
33秒前
岁月轮回发布了新的文献求助10
34秒前
漂亮孤兰完成签到 ,获得积分10
34秒前
西瓜完成签到 ,获得积分10
36秒前
hl完成签到,获得积分10
38秒前
共享精神应助科研通管家采纳,获得10
38秒前
38秒前
38秒前
无花果应助科研通管家采纳,获得10
38秒前
38秒前
38秒前
38秒前
39秒前
好想笑发布了新的文献求助10
40秒前
xzy998应助小天采纳,获得10
41秒前
北风应助mkljl采纳,获得10
43秒前
好想笑完成签到,获得积分10
46秒前
Lucas应助何博采纳,获得10
47秒前
十三完成签到,获得积分10
47秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3779606
求助须知:如何正确求助?哪些是违规求助? 3325116
关于积分的说明 10221269
捐赠科研通 3040209
什么是DOI,文献DOI怎么找? 1668673
邀请新用户注册赠送积分活动 798766
科研通“疑难数据库(出版商)”最低求助积分说明 758535