A machine learning-assisted study on organic solvents in electrolytes for expanding the electrochemical stable window of zinc-ion batteries

电解质 电化学 电化学窗口 材料科学 溶剂 水溶液 工作(物理) 化学 机械工程 冶金 电极 工程类 有机化学 物理化学 离子电导率
作者
Guangsheng Xu,Yajuan Zhang,Mingxi Jiang,Jinliang Li,Hengchao Sun,Jiabao Li,Ting Lu,Chenglong Wang,Guangya Yang,Likun Pan
出处
期刊:Chemical Engineering Journal [Elsevier]
卷期号:476: 146676-146676 被引量:48
标识
DOI:10.1016/j.cej.2023.146676
摘要

Currently, inherent deficiencies of water-based electrolytes, such as a narrow electrochemical stable window (ESW), lead to low operating voltage and insufficient energy density of zinc-ion batteries (ZIBs). Incorporating organic electrolytes into ZIBs is an effective strategy for expanding the ESW but the exploration on introducing organic solvent into zinc electrolyte is still scarce. In this work, the ESWs of 307 organic solvents in ZIBs were investigated assisted by machine learning (ML) methods. Four ML models were employed to predict the oxidation potentials (OPs) of organic solvents for zinc electrolytes. Among them, Gradient Boosting Regression (GBR) and Gaussian Process Regression (GPR) exhibit exceptional performance and achieve remarkable prediction results. Specifically, GBR model displays a highest R2 score of 0.905, an absolute error of 0.258 and an absolute percentage error of 8.30% on test set. The effect of selected features on the prediction results was investigated and the features with significant impact on the prediction of OP were summarized. ESWs (OPs) of six non-aqueous zinc electrolytes using three distinct organic solvents were measured by experimental methods and there is a notable agreement between measured ESW (OP) and the solvent OP computed by Density Functional Theory and ML models in general. Furthermore, Zn//Zn symmetrical batteries assembled with these electrolytes demonstrate remarkable cycling stability, showcasing their potential applications in ZIBs. This work develops ML models that can efficiently predict a large number of organic solvent OP for ZIBs, and provides a useful guidance for developing advanced non-aqueous and hybrid zinc electrolytes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
小二郎应助大树守卫采纳,获得10
1秒前
1秒前
us发布了新的文献求助10
1秒前
2秒前
2秒前
Chen完成签到,获得积分10
2秒前
3秒前
英俊的铭应助Sakura采纳,获得10
3秒前
3秒前
英姑应助蛋花采纳,获得10
4秒前
量子星尘发布了新的文献求助10
4秒前
4秒前
xmingpsy完成签到,获得积分10
4秒前
GL_001发布了新的文献求助10
4秒前
浮游应助吹又生采纳,获得10
4秒前
4秒前
大博发布了新的文献求助10
5秒前
Naruto发布了新的文献求助10
6秒前
6秒前
6秒前
灵76发布了新的文献求助10
6秒前
6秒前
星空发布了新的文献求助10
6秒前
7秒前
香蕉诗蕊应助顺利的绿海采纳,获得10
7秒前
科研通AI6应助顺利的绿海采纳,获得10
7秒前
搜集达人应助qian采纳,获得10
7秒前
8秒前
砰砰发布了新的文献求助10
8秒前
9秒前
上官若男应助deniroming采纳,获得10
9秒前
阳光的安南完成签到,获得积分10
9秒前
9秒前
不想学习发布了新的文献求助10
9秒前
9秒前
饶天源发布了新的文献求助10
9秒前
xg发布了新的文献求助10
10秒前
满意的苑博完成签到,获得积分10
10秒前
坦率行云发布了新的文献求助10
10秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 15000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5702689
求助须知:如何正确求助?哪些是违规求助? 5148126
关于积分的说明 15237445
捐赠科研通 4857358
什么是DOI,文献DOI怎么找? 2606394
邀请新用户注册赠送积分活动 1557648
关于科研通互助平台的介绍 1515453