Deep-learning based design and modeling for chiro-optical dielectric metasurfaces

纳米光子学 偏振器 色域 超材料 二向色玻璃 计算机科学 等离子体子 光子学 圆二色性 反向 材料科学 光学 光电子学 电子工程 物理 工程类 人工智能 数学 化学 双折射 几何学 结晶学
作者
Sadia Noureen,Hafiz Saad Khaliq,Muhammad Fizan,Muhammad Zubair,Muhammad Qasim Mehmood,Yehia Massoud
标识
DOI:10.1117/12.2685855
摘要

Nanophotonics employ chiro-optical effects for a variety of applications, including advanced imaging and molecular detection and separation. Due to their outstanding qualities in light-matter interactions, planar metasurfaces comprised of subwavelength meta-atoms have attracted a lot of attention. Despite of the vast potential of metasurfaces, achievement of large chiro-optical effects compactly on-chip at the visible wavelengths is still hindered by its complex design and optimization procedure. Deep-learning (DL) based modelling techniques have been put out as an alternative to the time-consuming and computationally demanding traditional design and optimization procedure of metasurfaces during the past few years. In this work, we have employed deep-learning based forward and inverse models to design and optimize achiral nano-fins to achieve giant chiro-optical affects at the visible wavelengths. A regression based forward neural network is proposed, that takes all the structural dimensions of the achiral nano-fins as input and trained separately to predict three different types of asymmetric transmissions i.e., TLL, TLR and TRL and circular dichroism. An inverse design model is also demonstrated that simultaneously considers all the three target transmissions and optimizes the dimensions of the achiral nano-fins in such a way that they experience constructive and destructive interference, resulting in an average circular dichroism of more than 60% and 70% asymmetric transmission. With potential applications in chiral polarizers for optical displays, flat integrated polarization shifter's exhibiting high efficiency, chiral-metasurface sensors and chiral beam splitters, the suggested DL-enabled design techniques ease the realization of op-chip giant chiro-optical response through planar metasurface.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Orange应助皮皮龙OVO采纳,获得10
2秒前
wys2493发布了新的文献求助30
3秒前
你说的完成签到 ,获得积分10
7秒前
难过的尔丝完成签到,获得积分10
8秒前
Orange应助小肆采纳,获得10
9秒前
11秒前
wys2493完成签到,获得积分10
12秒前
英姑应助林二车娜姆采纳,获得10
12秒前
务实的紫伊完成签到,获得积分10
13秒前
小肆完成签到 ,获得积分10
13秒前
充电宝应助玉汝于成采纳,获得10
14秒前
贝贝贝完成签到,获得积分10
17秒前
17秒前
皮皮龙OVO发布了新的文献求助10
18秒前
18秒前
19秒前
lcxszsd完成签到 ,获得积分10
22秒前
22秒前
研友_VZG7GZ应助lqm采纳,获得10
23秒前
姜呱呱呱发布了新的文献求助10
23秒前
鳗鱼凡波发布了新的文献求助10
24秒前
25秒前
Omni发布了新的文献求助10
25秒前
小谢同学完成签到 ,获得积分10
27秒前
希望天下0贩的0应助起风采纳,获得10
27秒前
蜀黍完成签到 ,获得积分10
27秒前
酷波er应助科研通管家采纳,获得10
28秒前
小蘑菇应助科研通管家采纳,获得10
28秒前
完美世界应助科研通管家采纳,获得10
29秒前
赘婿应助科研通管家采纳,获得10
29秒前
科研通AI5应助科研通管家采纳,获得10
29秒前
29秒前
豪的花花完成签到,获得积分10
33秒前
一朵小鲜花儿完成签到,获得积分10
33秒前
34秒前
玉汝于成发布了新的文献求助10
38秒前
40秒前
深情安青应助开朗的玉米采纳,获得10
42秒前
起风发布了新的文献求助10
43秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Images that translate 500
引进保护装置的分析评价八七年国外进口线路等保护运行情况介绍 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3841907
求助须知:如何正确求助?哪些是违规求助? 3383914
关于积分的说明 10532005
捐赠科研通 3104182
什么是DOI,文献DOI怎么找? 1709532
邀请新用户注册赠送积分活动 823313
科研通“疑难数据库(出版商)”最低求助积分说明 773878