Chromatin accessibility analysis and architectural profiling of human kidneys reveal key cell types and a regulator of diabetic kidney disease

染色质 转录因子 染色质免疫沉淀 生物 调节器 肾脏疾病 发病机制 纤维化 基因 计算生物学 染色质重塑 疾病 细胞生物学 癌症研究 生物信息学 发起人 遗传学 医学 病理 基因表达 免疫学 内分泌学
作者
Minho Eun,Donggun Kim,So-I Shin,Hyun Oh Yang,Kyoung-Dong Kim,Sin Young Choi,Sehoon Park,Dong Ki Kim,Chang Wook Jeong,Kyung‐Chul Moon,Hajeong Lee,Jihwan Park
出处
期刊:Kidney International [Elsevier BV]
卷期号:105 (1): 150-164 被引量:10
标识
DOI:10.1016/j.kint.2023.09.030
摘要

Diabetes is the leading cause of kidney disease that progresses to kidney failure. However, the key molecular and cellular pathways involved in diabetic kidney disease (DKD) pathogenesis are largely unknown. Here, we performed a comparative analysis of adult human kidneys by examining cell type-specific chromatin accessibility by single-nucleus ATAC-seq (snATAC-seq) and analyzing three-dimensional chromatin architecture via high-throughput chromosome conformation capture (Hi-C method) of paired samples. We mapped the cell type-specific and DKD-specific open chromatin landscape and found that genetic variants associated with kidney diseases were significantly enriched in the proximal tubule- (PT) and injured PT-specific open chromatin regions in samples from patients with DKD. BACH1 was identified as a core transcription factor of injured PT cells; its binding target genes were highly associated with fibrosis and inflammation, which were also key features of injured PT cells. Additionally, Hi-C analysis revealed global chromatin architectural changes in DKD, accompanied by changes in local open chromatin patterns. Combining the snATAC-seq and Hi-C data identified direct target genes of BACH1, and indicated that BACH1 binding regions showed increased chromatin contact frequency with promoters of their target genes in DKD. Thus, our multi-omics analysis revealed BACH1 target genes in injured PTs and highlighted the role of BACH1 as a novel regulator of tubular inflammation and fibrosis. Diabetes is the leading cause of kidney disease that progresses to kidney failure. However, the key molecular and cellular pathways involved in diabetic kidney disease (DKD) pathogenesis are largely unknown. Here, we performed a comparative analysis of adult human kidneys by examining cell type-specific chromatin accessibility by single-nucleus ATAC-seq (snATAC-seq) and analyzing three-dimensional chromatin architecture via high-throughput chromosome conformation capture (Hi-C method) of paired samples. We mapped the cell type-specific and DKD-specific open chromatin landscape and found that genetic variants associated with kidney diseases were significantly enriched in the proximal tubule- (PT) and injured PT-specific open chromatin regions in samples from patients with DKD. BACH1 was identified as a core transcription factor of injured PT cells; its binding target genes were highly associated with fibrosis and inflammation, which were also key features of injured PT cells. Additionally, Hi-C analysis revealed global chromatin architectural changes in DKD, accompanied by changes in local open chromatin patterns. Combining the snATAC-seq and Hi-C data identified direct target genes of BACH1, and indicated that BACH1 binding regions showed increased chromatin contact frequency with promoters of their target genes in DKD. Thus, our multi-omics analysis revealed BACH1 target genes in injured PTs and highlighted the role of BACH1 as a novel regulator of tubular inflammation and fibrosis. Leveraging multimodal chromatin profiling to identify a new potential driver of diabetic kidney diseaseKidney InternationalVol. 105Issue 1PreviewThe 3-dimensional nature of chromatin architecture plays crucial roles in regulating gene expression in development, homeostasis, and disease. Until recently, however, comprehensive chromatin profiling in human kidneys has been lacking. In this issue, Eun and Kim et al. employed a multimodal approach by integrating a single-nucleus assay for transposase-accessible chromatin sequencing, chromatin immunoprecipitation sequencing, and Hi-C (a method to comprehensively detect chromatin interactions) to investigate how the epigenetic landscape is altered in diabetic kidney disease. Full-Text PDF
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
清新的万天完成签到,获得积分10
1秒前
1秒前
李健应助MIUMIU采纳,获得30
2秒前
2秒前
3秒前
zzx发布了新的文献求助10
4秒前
zyf完成签到 ,获得积分10
4秒前
wangy发布了新的文献求助10
5秒前
桂花乌龙发布了新的文献求助10
5秒前
科研通AI6应助fffc采纳,获得30
6秒前
wenwenya完成签到,获得积分20
6秒前
孙季沅完成签到,获得积分10
7秒前
科研通AI5应助小苏采纳,获得10
9秒前
科研小白发布了新的文献求助10
10秒前
leo发布了新的文献求助10
10秒前
11秒前
星辰大海应助屁特采纳,获得10
13秒前
14秒前
欣慰若完成签到,获得积分10
15秒前
15秒前
Lucas应助teng采纳,获得10
17秒前
18秒前
幸福大白发布了新的文献求助10
19秒前
20秒前
eric888应助zzx采纳,获得10
20秒前
领导范儿应助科研通管家采纳,获得10
20秒前
浮游应助科研小白采纳,获得10
20秒前
核桃应助科研通管家采纳,获得30
20秒前
21秒前
科研通AI6应助科研通管家采纳,获得10
21秒前
科研通AI6应助科研通管家采纳,获得10
21秒前
搜集达人应助科研通管家采纳,获得10
21秒前
baixue发布了新的文献求助10
21秒前
ding应助科研通管家采纳,获得10
21秒前
完美世界应助科研通管家采纳,获得10
21秒前
SciGPT应助科研通管家采纳,获得10
21秒前
1234发布了新的文献求助10
21秒前
21秒前
21秒前
fengliurencai完成签到,获得积分10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
An overview of orchard cover crop management 1000
Rapid Review of Electrodiagnostic and Neuromuscular Medicine: A Must-Have Reference for Neurologists and Physiatrists 1000
二维材料在应力作用下的力学行为和层间耦合特性研究 600
基于3um sOl硅光平台的集成发射芯片关键器件研究 500
Progress and Regression 400
A review of Order Plesiosauria, and the description of a new, opalised pliosauroid, Leptocleidus demoscyllus, from the early cretaceous of Coober Pedy, South Australia 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4812397
求助须知:如何正确求助?哪些是违规求助? 4125118
关于积分的说明 12764375
捐赠科研通 3862071
什么是DOI,文献DOI怎么找? 2125736
邀请新用户注册赠送积分活动 1147312
关于科研通互助平台的介绍 1041082