LC‐MS‐based urine metabolomics analysis of chronic subdural hematoma for biomarker discovery

代谢组学 尿 生物标志物 生物标志物发现 葡萄糖醛酸盐 代谢组 代谢途径 医学 内科学 生物信息学 新陈代谢 生物 生物化学 蛋白质组学 基因
作者
Jiameng Sun,Yunwei Ou,Xiaoping Xiao,Haidan Sun,Zhengguang Guo,Feng Qi,Ying Lan,Weiming Liu,Wei Sun
出处
期刊:Proteomics Clinical Applications [Wiley]
卷期号:18 (1) 被引量:1
标识
DOI:10.1002/prca.202200107
摘要

Abstract Background Chronic subdural hematoma (CSDH) is one of the most common neurosurgical diseases with atypical manifestations. The aim of this study was to utilize urine metabolomics to explore potential biomarkers for the diagnosis and prognosis of CSDH. Methods Seventy‐seven healthy controls and ninety‐two patients with CSDH were enrolled in our study. In total, 261 urine samples divided into the discovery group and validation group were analyzed by LC‐MS. The statistical analysis and functional annotation were applied to discover potential biomarker panels and altered metabolic pathways. Results A total of 53 differential metabolites were identified in this study. And the urinary metabolic profiles showed apparent separation between patients and controls. Further functional annotation showed that the differential metabolites were associated with lipid metabolism, fatty acid metabolism, amino acid metabolism, biotin metabolism, steroid hormone biosynthesis, and pentose and glucuronate interconversions. Moreover, one panel of Capryloylglycine, cis‐5‐Octenoic acid, Ethisterone, and 5,6‐DiHETE showed good predictive performance in the diagnosis of CSDH, with an AUC of 0.89 in discovery group and an AUC of 0.822 in validation group. Another five metabolites (Trilobinol, 3′‐Hydroxyropivacaine, Ethisterone, Arginyl‐Proline, 5‐alpha‐Dihydrotestosterone glucuronide) showed the levels of them returned to a healthy state after surgery, showing good possibility to monitor the recovery of CSDH patients. Conclusion and Clinical Relevance The findings of the study revealed urine metabolomic differences between CSDH and controls. The potentially diagnostic and prognostic biomarker panels of urine metabolites were established, and functional analysis demonstrated deeper metabolic disorders of CSDH, which might conduce to improve early diagnose of CSDH clinically.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
小羊发布了新的文献求助10
3秒前
马喽完成签到,获得积分10
3秒前
研友_8KKMP8发布了新的文献求助10
7秒前
无奈犀牛完成签到,获得积分10
7秒前
Lucas应助学术大牛采纳,获得10
10秒前
现实的飞风完成签到,获得积分10
12秒前
13秒前
章鱼小丸子完成签到,获得积分10
14秒前
16秒前
wanci应助云中鸮采纳,获得10
16秒前
少女和猫发布了新的文献求助30
20秒前
小m发布了新的文献求助10
20秒前
南桑发布了新的文献求助10
22秒前
Starry完成签到,获得积分10
22秒前
生动的大地完成签到,获得积分20
24秒前
脑洞疼应助土豆酱采纳,获得10
24秒前
研友_8KKMP8完成签到,获得积分10
24秒前
大模型应助小人物采纳,获得10
28秒前
小蘑菇应助南桑采纳,获得10
28秒前
小胖完成签到,获得积分10
32秒前
852应助99采纳,获得10
34秒前
37秒前
traetrae完成签到,获得积分10
37秒前
充电宝应助爬不起来采纳,获得10
38秒前
Wei完成签到 ,获得积分10
39秒前
可爱的函函应助yihua采纳,获得10
40秒前
Teddyboy完成签到,获得积分10
41秒前
Taemy完成签到,获得积分10
41秒前
可靠的冰烟完成签到,获得积分10
41秒前
学术大牛发布了新的文献求助10
42秒前
科研通AI5应助SHENZH采纳,获得10
42秒前
搜集达人应助后羿采纳,获得10
43秒前
43秒前
44秒前
AAA完成签到,获得积分10
45秒前
共享精神应助ayj采纳,获得10
45秒前
李健应助大气摩托采纳,获得10
45秒前
zjh完成签到,获得积分10
45秒前
46秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Deciphering Earth's History: the Practice of Stratigraphy 200
New Syntheses with Carbon Monoxide 200
Quanterion Automated Databook NPRD-2023 200
Interpretability and Explainability in AI Using Python 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3835031
求助须知:如何正确求助?哪些是违规求助? 3377559
关于积分的说明 10499056
捐赠科研通 3097028
什么是DOI,文献DOI怎么找? 1705435
邀请新用户注册赠送积分活动 820590
科研通“疑难数据库(出版商)”最低求助积分说明 772123