Predicting Trending Elements on Web Pages Using Machine Learning

计算机科学 任务(项目管理) 网页 路径(计算) 序列(生物学) 眼动 人工智能 机器学习 情报检索 万维网 管理 生物 经济 遗传学 程序设计语言
作者
Naziha Shekh Khalil,Sukru Eraslan,Yeliz Yeşilada
出处
期刊:International Journal of Human-computer Interaction [Informa]
卷期号:40 (22): 7065-7080 被引量:1
标识
DOI:10.1080/10447318.2023.2261677
摘要

AbstractEye-tracking data can be used to understand how users interact with web pages. Understanding the eye-movement sequences of multiple users is a challenging task because the sequence followed by each user tends to be different. Scanpath Trend Analysis (STA) brings multiple individual eye-movement sequences together and identifies a representative sequence as a trending path. However, eye-tracking data on a web page is required to determine the trending path. Our aim here is to investigate whether we can train Machine Learning (ML) algorithms to identify trending elements on a web page without collecting eye-tracking data on that web page. This article presents our experiments with different ML classification algorithms towards achieving that goal. To validate the experiments, we used two datasets from previous research, the first one included browsing and searching tasks and the second one included browsing and synthesis tasks. Our experiments show that the k-nearest neighbors algorithm (KNN) model can successfully identify the trending elements in the first dataset for both browsing (F1=≈91%) and searching tasks (F1=≈88%). However, the second dataset's synthesis task results were not as successful as its browsing task results. Our work here shows that a model can be created to predict the trending elements in web pages solely with web page features but the task is a critical factor in the success of prediction.Keywords: Eye-trackingtrending pathscanpath trend analysismachine learning Disclosure statementNo potential conflict of interest was reported by the author(s).Notes1 Throughout this paper, we use AOI/segments interchangeably with visual elements of web pages.2 https://developers.google.com/web/tools/puppeteerAdditional informationNotes on contributorsNaziha Shekh KhalilNaziha Shekh Khalil holds BSc and MSc degrees in Computer Engineering from Middle East Technical University Northern Cyprus. Her research focuses on enhancing user experiences in the digital world through human-computer systems.Sukru EraslanSukru Eraslan is a lecturer at Middle East Technical University Northern Cyprus Campus. He completed his PhD in Computer Science at the University of Manchester. He then worked as a research associate at METU NCC and the University of Manchester. His primary research interests are centred around human–computer interaction. https://users.metu.edu.tr/seraslan/index.htmlYeliz YesiladaYeliz Yesilada earned her PhD in Computer Science from the University of Manchester in the UK. She is a Professor at Middle East Technical University Northern Cyprus Campus. Her primary research interest is the human–computer interaction, particularly user behaviour analysis and modelling, the mobile Web, and eye-tracking. https://www.yelizyesilada.info.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
思源应助科研通管家采纳,获得10
刚刚
刚刚
小马甲应助科研通管家采纳,获得10
刚刚
iiddxx应助科研通管家采纳,获得10
刚刚
刚刚
刚刚
爆米花应助科研通管家采纳,获得10
刚刚
刚刚
刚刚
toutou应助科研通管家采纳,获得10
刚刚
刚刚
toutou应助科研通管家采纳,获得10
刚刚
toutou应助科研通管家采纳,获得10
刚刚
toutou应助科研通管家采纳,获得10
刚刚
toutou应助科研通管家采纳,获得10
刚刚
隐形曼青应助科研通管家采纳,获得10
刚刚
1秒前
1秒前
JamesPei应助科研通管家采纳,获得10
1秒前
1秒前
桐桐应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
赘婿应助科研通管家采纳,获得10
1秒前
搜集达人应助科研通管家采纳,获得10
1秒前
斯文败类应助科研通管家采纳,获得10
1秒前
Elvira完成签到,获得积分10
2秒前
仁爱元冬完成签到,获得积分10
2秒前
元靖完成签到,获得积分10
2秒前
丁笑天发布了新的文献求助10
3秒前
lilili应助YangSY采纳,获得10
3秒前
4秒前
5秒前
西出阳关发布了新的文献求助10
5秒前
小二郎应助zxq采纳,获得10
5秒前
尹天扬完成签到,获得积分10
5秒前
6秒前
英俊的铭应助研友_LavApn采纳,获得10
6秒前
6秒前
6秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
从k到英国情人 1700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5775681
求助须知:如何正确求助?哪些是违规求助? 5625393
关于积分的说明 15439397
捐赠科研通 4907935
什么是DOI,文献DOI怎么找? 2641025
邀请新用户注册赠送积分活动 1588807
关于科研通互助平台的介绍 1543677