Feature detection of mineral zoning in spiral slope flow under complex conditions based on improved YOLOv5 algorithm

计算机科学 特征(语言学) 算法 人工智能 模糊逻辑 盈利能力指数 数据挖掘 模式识别(心理学) 财务 语言学 哲学 经济
作者
You Keshun,Huizhong Liu
出处
期刊:Physica Scripta [IOP Publishing]
卷期号:99 (1): 016001-016001 被引量:26
标识
DOI:10.1088/1402-4896/ad0f7d
摘要

Abstract In actual processing plants, the quality and efficiency of the traditional spiral slope flow concentrator still rely on workers to observe the changes in the mineral belt. However, in realistic complex working conditions, the formation of mineral separation zones is subject to large uncertainties, and coupled with the limited efforts, experience, and responsibility of workers, it becomes important to free up labour and improve the efficiency and profitability of the beneficiation plant. Therefore, to solve the problem of difficult detection of fuzzy small target mineral separation point features in real scenes, an improved YOLOv5-based algorithm is proposed. Firstly, the dataset quality is well improved by image enhancement and pre-processing techniques, after that an innovative CASM attention mechanism is added to the backbone of the YOLOv5 model, followed by a multi-scale feature output and prediction enhancement in the neck part of the model, and an optimized loss function is designed to optimize the whole feature learning process. The improved effect of the model and the specific detection performance were tested using real mine belt image datasets, the ablation experiment verified the comprehensive effectiveness of the proposed improved method and finally compared it with the existing high-level attention mechanism and target detection algorithms. The experimental results show that the improved YOLOv5 algorithm proposed in this study has the best overall detection performance carrying a MAP of 0.954, which is over 20% better than YOLOv5. It is worth mentioning that the improvement to achieve this performance only increases the parameter values by 0.8M and GFLOPs by 1.8, moreover, in terms of the inference speed, it also achieves a respectable 63 FPS, implying that the proposed improved method achieves a better balance between the performance enhancement and the computational complexity of the model, the overall detection results fully satisfy the industrial requirements.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
超帅青旋完成签到,获得积分20
1秒前
2秒前
2秒前
5秒前
泽锦臻完成签到 ,获得积分10
7秒前
可爱的函函应助研友_5Zl9D8采纳,获得10
7秒前
langjidong完成签到,获得积分10
8秒前
8秒前
chestnut灬完成签到 ,获得积分10
8秒前
凡人修仙完成签到,获得积分10
9秒前
miku1发布了新的文献求助10
9秒前
冬冬完成签到,获得积分10
9秒前
皇甫藏鸟完成签到,获得积分10
9秒前
9秒前
无限妙旋完成签到,获得积分10
9秒前
ABCDEFG发布了新的文献求助10
10秒前
星辰大海应助skyfall采纳,获得10
11秒前
11秒前
斯文败类应助丫丫采纳,获得10
11秒前
于雷是我完成签到,获得积分10
11秒前
我是老大应助皇甫藏鸟采纳,获得10
12秒前
13秒前
王军发布了新的文献求助20
13秒前
13秒前
14秒前
11111完成签到 ,获得积分10
15秒前
打打应助一人独钓一江秋采纳,获得10
15秒前
天天快乐应助小莫采纳,获得10
17秒前
18秒前
19秒前
小九完成签到 ,获得积分10
20秒前
杳鸢完成签到,获得积分0
20秒前
21秒前
23秒前
orixero应助科研通管家采纳,获得10
24秒前
小蘑菇应助科研通管家采纳,获得10
24秒前
Ava应助科研通管家采纳,获得10
24秒前
科研通AI5应助科研通管家采纳,获得10
24秒前
JamesPei应助科研通管家采纳,获得10
24秒前
情怀应助科研通管家采纳,获得10
24秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3789592
求助须知:如何正确求助?哪些是违规求助? 3334534
关于积分的说明 10270460
捐赠科研通 3050998
什么是DOI,文献DOI怎么找? 1674381
邀请新用户注册赠送积分活动 802549
科研通“疑难数据库(出版商)”最低求助积分说明 760761