Recent Applications of Machine Learning in Molecular Property and Chemical Reaction Outcome Predictions

工作流程 化学 亲脂性 机器学习 人工智能 计算机科学 特征工程 特征(语言学) 财产(哲学) 实施 人工神经网络 深度学习 有机化学 数据库 语言学 认识论 哲学 程序设计语言
作者
Shilpa Shilpa,Gargee Kashyap,Raghavan B. Sunoj
出处
期刊:Journal of Physical Chemistry A [American Chemical Society]
卷期号:127 (40): 8253-8271 被引量:16
标识
DOI:10.1021/acs.jpca.3c04779
摘要

Burgeoning developments in machine learning (ML) and its rapidly growing adaptations in chemistry are noteworthy. Motivated by the successful deployments of ML in the realm of molecular property prediction (MPP) and chemical reaction prediction (CRP), herein we highlight some of its most recent applications in predictive chemistry. We present a nonmathematical and concise overview of the progression of ML implementations, ranging from an ensemble-based random forest model to advanced graph neural network algorithms. Similarly, the prospects of various feature engineering and feature learning approaches that work in conjunction with ML models are described. Highly accurate predictions reported in MPP tasks (e.g., lipophilicity, solubility, distribution coefficient), using methods such as D-MPNN, MolCLR, SMILES-BERT, and MolBERT, offer promising avenues in molecular design and drug discovery. Whereas MPP pertains to a given molecule, ML applications in chemical reactions present a different level of challenge, primarily arising from the simultaneous involvement of multiple molecules and their diverse roles in a reaction setting. The reported RMSEs in MPP tasks range from 0.287 to 2.20, while those for yield predictions are well over 4.9 in the lower end, reaching thresholds of >10.0 in several examples. Our Review concludes with a set of persisting challenges in dealing with reaction data sets and an overall optimistic outlook on benefits of ML-driven workflows for various MPP as well as CRP tasks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
桂花完成签到 ,获得积分10
刚刚
孤独雨梅完成签到,获得积分10
1秒前
柳觅夏完成签到,获得积分10
2秒前
2秒前
飘逸的麦片完成签到,获得积分10
2秒前
让他加完成签到,获得积分10
3秒前
务实完成签到 ,获得积分10
4秒前
Linda完成签到,获得积分10
6秒前
超威蓝猫发布了新的文献求助10
7秒前
踏水追风完成签到,获得积分10
8秒前
ruby完成签到,获得积分10
9秒前
零知识完成签到 ,获得积分10
10秒前
倪小呆完成签到 ,获得积分10
12秒前
晨曦完成签到 ,获得积分10
13秒前
chen完成签到,获得积分10
14秒前
caisongliang完成签到,获得积分10
16秒前
Tuniverse_完成签到 ,获得积分10
16秒前
852应助ajing采纳,获得10
18秒前
marvin完成签到,获得积分10
19秒前
YY完成签到,获得积分10
19秒前
xinyueyue完成签到,获得积分20
19秒前
道交法完成签到,获得积分10
19秒前
超威蓝猫完成签到,获得积分10
20秒前
孝顺的觅风完成签到 ,获得积分10
21秒前
缥缈的冰旋完成签到,获得积分10
22秒前
科研通AI2S应助让他加采纳,获得10
23秒前
孤独的涵柳完成签到 ,获得积分10
23秒前
zombleq完成签到 ,获得积分10
23秒前
guishouyu完成签到,获得积分10
24秒前
万事屋完成签到 ,获得积分10
24秒前
萧秋灵完成签到,获得积分10
24秒前
无头人完成签到 ,获得积分10
25秒前
25秒前
xybjt完成签到 ,获得积分10
30秒前
雪山飞龙发布了新的文献求助10
31秒前
菠萝蜜完成签到,获得积分10
32秒前
SCIER完成签到 ,获得积分10
33秒前
littleE完成签到 ,获得积分0
33秒前
包包酱完成签到,获得积分10
34秒前
lzzk完成签到,获得积分10
35秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Friction Capacity of Piles Driven into Clay 300
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Engineering the boosting of the magnetic Purcell factor with a composite structure based on nanodisk and ring resonators 240
Study of enhancing employee engagement at workplace by adopting internet of things 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3837587
求助须知:如何正确求助?哪些是违规求助? 3379721
关于积分的说明 10510250
捐赠科研通 3099320
什么是DOI,文献DOI怎么找? 1707062
邀请新用户注册赠送积分活动 821413
科研通“疑难数据库(出版商)”最低求助积分说明 772615