已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Spectroscopic Characterization of Impactites and a Machine Learning Approach to Determine the Oxidation State of Iron in Glass‐Bearing Materials

镁铁质 光谱学 矿物学 粒度 材料科学 分析化学(期刊) 化学 地质学 复合材料 地球化学 物理 有机化学 量子力学
作者
Enrico Bruschini,Cristian Carli,Henrik Skogby,Giovanni B. Andreozzi,Aleksandra N. Stojic,A. Morlok
出处
期刊:Journal Of Geophysical Research: Planets [Wiley]
卷期号:128 (3) 被引量:2
标识
DOI:10.1029/2023je007736
摘要

Abstract We investigated a suite of impact glass‐bearing rocks using a multi‐analytical approach including visible‐near‐infrared diffuse reflectance spectroscopy, Mössbauer spectroscopy, and powder X‐ray diffraction. In order to better understand and interpret the obtained results, we built a database containing physical, chemical, and spectroscopic information on glasses and glass‐bearing materials using new results from this study and published works. We used the database to explore systematic relationships between parameters of interest and finally we applied several machine learning algorithms (support vector machine, random forests, and gradient boosting) to test the possibility to regress the oxidation state of iron from chemical and spectroscopic information. Our results show that even small amounts of mafic crystalline phases have a big influence on the spectral features of glass‐bearing rocks. Samples without mafic crystalline inclusions show the typical spectrum of glasses (two broad and shallow bands roughly centered around 1,100 and 1,900 nm) with minor variations due to bulk chemistry. We described a non‐linear relationship between average reflectance (average reflectance value between 500 and 1,000 nm), FeO + TiO 2 content, grain size, and Fe 3+ /Fe TOT . We tested the relation for the finer grain size (0–25 μm), and we qualitatively assessed how it is affected by grain size, Fe 3+ /Fe TOT , and crystal content. Finally, we developed a machine learning pipeline to regress the Fe 3+ /Fe TOT of glass‐bearing materials using the proposed database. Our machine learning calculations give satisfactory results (MAE: 0.0321) and additional data will enable the application of our computational strategy to remotely acquired data to extract chemical and mineralogical information of planetary surfaces.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
知弈否发布了新的文献求助10
1秒前
Orange应助命苦科研人采纳,获得10
2秒前
小二郎应助十月木樨采纳,获得10
2秒前
3秒前
BowieHuang应助科研通管家采纳,获得10
3秒前
3秒前
Ava应助無端采纳,获得10
4秒前
大模型应助米可熊采纳,获得20
7秒前
7秒前
英俊的铭应助朱加德采纳,获得10
8秒前
CodeCraft应助小赖想睡觉采纳,获得10
8秒前
zyy应助无语的万言采纳,获得10
12秒前
13秒前
15秒前
Werner完成签到 ,获得积分10
15秒前
hh完成签到,获得积分10
17秒前
17秒前
知弈否完成签到,获得积分10
17秒前
18秒前
甜美依云完成签到,获得积分10
21秒前
JiahaoRao应助鸣风采纳,获得30
21秒前
002完成签到,获得积分10
22秒前
Emma发布了新的文献求助10
22秒前
22秒前
23秒前
Criminology34应助summing采纳,获得10
23秒前
ranj完成签到,获得积分10
23秒前
Jack完成签到,获得积分10
27秒前
27秒前
鸣风完成签到,获得积分10
30秒前
聪明爱迪生完成签到,获得积分10
30秒前
001完成签到,获得积分0
31秒前
33秒前
33秒前
威武的访梦完成签到,获得积分10
35秒前
36秒前
小徐小徐发布了新的文献求助10
37秒前
吾系渣渣辉完成签到 ,获得积分10
39秒前
41秒前
43秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5542985
求助须知:如何正确求助?哪些是违规求助? 4629125
关于积分的说明 14610877
捐赠科研通 4570403
什么是DOI,文献DOI怎么找? 2505738
邀请新用户注册赠送积分活动 1483053
关于科研通互助平台的介绍 1454361