Advancing Human-AI Complementarity: The Impact of User Expertise and Algorithmic Tuning on Joint Decision Making

计算机科学 任务(项目管理) 人工智能 互补性(分子生物学) 补语(音乐) 人机交互 机器学习 工程类 基因 生物 表型 生物化学 化学 遗传学 系统工程 互补
作者
Kori Inkpen,Shreya Chappidi,Keri Mallari,Besmira Nushi,Divya Ramesh,Pietro Michelucci,Vani Mandava,Libuše Hannah Vepřek,Gabrielle Quinn
出处
期刊:ACM Transactions on Computer-Human Interaction [Association for Computing Machinery]
卷期号:30 (5): 1-29 被引量:63
标识
DOI:10.1145/3534561
摘要

Human-AI collaboration for decision-making strives to achieve team performance that exceeds the performance of humans or AI alone. However, many factors can impact success of Human-AI teams, including a user’s domain expertise, mental models of an AI system, trust in recommendations, and more. This article reports on a study that examines users’ interactions with three simulated algorithmic models, all with equivalent accuracy rates but each tuned differently in terms of true positive and true negative rates. Our study examined user performance in a non-trivial blood vessel labeling task where participants indicated whether a given blood vessel was flowing or stalled. Users completed 140 trials across multiple stages, first without an AI and then with recommendations from an AI-Assistant. Although all users had prior experience with the task, their levels of proficiency varied widely. Our results demonstrated that while recommendations from an AI-Assistant can aid in users’ decision making, several underlying factors, including user base expertise and complementary human-AI tuning, significantly impact the overall team performance. First, users’ base performance matters, particularly in comparison to the performance level of the AI. Novice users improved, but not to the accuracy level of the AI. Highly proficient users were generally able to discern when they should follow the AI recommendation and typically maintained or improved their performance. Mid-performers, who had a similar level of accuracy to the AI, were most variable in terms of whether the AI recommendations helped or hurt their performance. Second, tuning an AI algorithm to complement users’ strengths and weaknesses also significantly impacted users’ performance. For example, users in our study were better at detecting flowing blood vessels, so when the AI was tuned to reduce false negatives (at the expense of increasing false positives), users were able to reject those recommendations more easily and improve in accuracy. Finally, users’ perception of the AI’s performance relative to their own performance had an impact on whether users’ accuracy improved when given recommendations from the AI. Overall, this work reveals important insights on the complex interplay of factors influencing Human-AI collaboration and provides recommendations on how to design and tune AI algorithms to complement users in decision-making tasks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
runpeng完成签到,获得积分10
1秒前
沉着发布了新的文献求助10
1秒前
小慈爱鸡完成签到 ,获得积分10
2秒前
庞伟泽完成签到,获得积分10
2秒前
3秒前
睡着的鱼完成签到,获得积分10
4秒前
天天快乐应助科研通管家采纳,获得10
5秒前
乐乐应助科研通管家采纳,获得10
5秒前
英俊的铭应助科研通管家采纳,获得10
5秒前
李爱国应助科研通管家采纳,获得10
5秒前
彭于晏应助科研通管家采纳,获得10
5秒前
加缪应助科研通管家采纳,获得10
5秒前
领导范儿应助科研通管家采纳,获得30
5秒前
wanci应助科研通管家采纳,获得10
5秒前
sheepm完成签到,获得积分10
5秒前
我是老大应助科研通管家采纳,获得10
5秒前
领导范儿应助科研通管家采纳,获得10
6秒前
NexusExplorer应助科研通管家采纳,获得10
6秒前
CodeCraft应助科研通管家采纳,获得10
6秒前
JamesPei应助科研通管家采纳,获得10
6秒前
6秒前
keke完成签到,获得积分10
8秒前
10秒前
马关维发布了新的文献求助10
10秒前
11秒前
领导范儿应助超自然采纳,获得10
11秒前
感性的初兰完成签到,获得积分10
14秒前
一心向雨发布了新的文献求助10
14秒前
16秒前
16秒前
yunwen发布了新的文献求助10
17秒前
今后应助muBai嘎嘎牛采纳,获得10
18秒前
无花果应助一方通行采纳,获得10
19秒前
19秒前
叶泽完成签到,获得积分10
19秒前
20秒前
cath完成签到,获得积分10
21秒前
华仔应助超级月饼采纳,获得10
22秒前
三一思齐发布了新的文献求助10
23秒前
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
高温高圧下融剤法によるダイヤモンド単結晶の育成と不純物の評価 5000
Rapid Review of Electrodiagnostic and Neuromuscular Medicine: A Must-Have Reference for Neurologists and Physiatrists 500
Vertebrate Palaeontology, 5th Edition 500
ISO/IEC 24760-1:2025 Information security, cybersecurity and privacy protection — A framework for identity management 500
碳捕捉技术能效评价方法 500
Optimization and Learning via Stochastic Gradient Search 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4722091
求助须知:如何正确求助?哪些是违规求助? 4081624
关于积分的说明 12622483
捐赠科研通 3787193
什么是DOI,文献DOI怎么找? 2091533
邀请新用户注册赠送积分活动 1117571
科研通“疑难数据库(出版商)”最低求助积分说明 994381