MDST: multi-domain sparse-view CT reconstruction based on convolution and swin transformer

计算机科学 迭代重建 人工智能 残余物 投影(关系代数) 卷积(计算机科学) 背景(考古学) 计算机视觉 卷积神经网络 模式识别(心理学) 算法 人工神经网络 古生物学 生物
作者
Yu Li,Xueqin Sun,Sukai Wang,Xuru Li,Yingwei Qin,Jinxiao Pan,Ping Chen
出处
期刊:Physics in Medicine and Biology [IOP Publishing]
卷期号:68 (9): 095019-095019 被引量:18
标识
DOI:10.1088/1361-6560/acc2ab
摘要

Objective.Sparse-view computed tomography (SVCT), which can reduce the radiation doses administered to patients and hasten data acquisition, has become an area of particular interest to researchers. Most existing deep learning-based image reconstruction methods are based on convolutional neural networks (CNNs). Due to the locality of convolution and continuous sampling operations, existing approaches cannot fully model global context feature dependencies, which makes the CNN-based approaches less efficient in modeling the computed tomography (CT) images with various structural information.Approach.To overcome the above challenges, this paper develops a novel multi-domain optimization network based on convolution and swin transformer (MDST). MDST uses swin transformer block as the main building block in both projection (residual) domain and image (residual) domain sub-networks, which models global and local features of the projections and reconstructed images. MDST consists of two modules for initial reconstruction and residual-assisted reconstruction, respectively. The sparse sinogram is first expanded in the initial reconstruction module with a projection domain sub-network. Then, the sparse-view artifacts are effectively suppressed by an image domain sub-network. Finally, the residual assisted reconstruction module to correct the inconsistency of the initial reconstruction, further preserving image details.Main results. Extensive experiments on CT lymph node datasets and real walnut datasets show that MDST can effectively alleviate the loss of fine details caused by information attenuation and improve the reconstruction quality of medical images.Significance.MDST network is robust and can effectively reconstruct images with different noise level projections. Different from the current prevalent CNN-based networks, MDST uses transformer as the main backbone, which proves the potential of transformer in SVCT reconstruction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
彭于晏应助乾雨采纳,获得10
1秒前
3秒前
哭泣青烟完成签到 ,获得积分10
3秒前
ican完成签到,获得积分10
4秒前
ixueyi完成签到,获得积分10
5秒前
可爱的函函应助内向的博采纳,获得10
7秒前
7秒前
sleepingfish应助科研通管家采纳,获得20
7秒前
7秒前
bkagyin应助科研通管家采纳,获得20
7秒前
Akim应助科研通管家采纳,获得10
7秒前
7秒前
科研通AI6应助科研通管家采纳,获得10
7秒前
8秒前
chenfaju发布了新的文献求助10
8秒前
Lucas应助陛下采纳,获得10
9秒前
咕_完成签到 ,获得积分10
10秒前
猪猪hero发布了新的文献求助10
12秒前
慈祥的爆米花完成签到,获得积分10
13秒前
杜飞完成签到,获得积分10
16秒前
Kinn完成签到,获得积分10
16秒前
17秒前
zimi完成签到,获得积分10
17秒前
Wk完成签到,获得积分10
19秒前
GLFCX完成签到,获得积分10
20秒前
20秒前
浮游应助Wk采纳,获得10
21秒前
韩立完成签到 ,获得积分10
22秒前
乾雨发布了新的文献求助10
22秒前
fengzi151完成签到,获得积分10
24秒前
内向的博发布了新的文献求助10
25秒前
文艺的冬卉完成签到,获得积分10
26秒前
杜飞发布了新的文献求助10
27秒前
shadow完成签到,获得积分10
27秒前
lx完成签到,获得积分10
30秒前
动听白秋完成签到 ,获得积分10
31秒前
XM完成签到,获得积分10
32秒前
wbb完成签到 ,获得积分10
32秒前
勤劳善良的胖蜜蜂完成签到,获得积分10
33秒前
liuxh123发布了新的文献求助10
33秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
高温高圧下融剤法によるダイヤモンド単結晶の育成と不純物の評価 5000
Rapid Review of Electrodiagnostic and Neuromuscular Medicine: A Must-Have Reference for Neurologists and Physiatrists 500
Vertebrate Palaeontology, 5th Edition 500
ISO/IEC 24760-1:2025 Information security, cybersecurity and privacy protection — A framework for identity management 500
碳捕捉技术能效评价方法 500
Optimization and Learning via Stochastic Gradient Search 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4719583
求助须知:如何正确求助?哪些是违规求助? 4080331
关于积分的说明 12617145
捐赠科研通 3784790
什么是DOI,文献DOI怎么找? 2090600
邀请新用户注册赠送积分活动 1116613
科研通“疑难数据库(出版商)”最低求助积分说明 993685