Machine learning approaches for automatic classification of single-particle mass spectrometry data

气溶胶 聚类分析 随机森林 粒子(生态学) 人工智能 计算机科学 支持向量机 机器学习 算法 物理 气象学 地质学 海洋学
作者
Guanzhong Wang,Heinrich Ruser,Julian Schade,Johannes Passig,Thomas Adam,G. Dollinger,Ralf Zimmermann
标识
DOI:10.5194/egusphere-2023-784
摘要

Abstract. The chemical composition of aerosol particles is a key parameter for human health and climate effects. Single-particle mass spectrometry (SPMS) has evolved to a mature technology with unique chemical coverage and the capability to analyze the distribution of aerosol components in the particle ensemble in real-time. With the fully automated characterization of the chemical profile of the aerosol particles, selective real-time monitoring of air quality could be performed e.g. for urgent risk assessments due to particularly harmful pollutants. For aerosol particle classification, mostly unsupervised clustering algorithms (ART-2a, K-means and their derivatives) are used, which require manual post-processing. In this work, we focus on supervised algorithms to tackle the problem of automatic classification of large amounts of aerosol particle data. Supervised learning requires data with labels to train a predictive model. Therefore, we created a labeled benchmark dataset containing ~24,000 particles with eight different coarse categories that were highly abundant at a measurement in summer in Central Europe: Elemental Carbon (EC), Organic Carbon and Elemental Carbon (OC-EC), Potassium-rich (K-rich), Calcium-rich (Ca-rich), Iron-rich (Fe-rich), Vanadium-rich (V-rich), Magnesium-rich (Mg-rich) and Sodium-rich (Na-rich). Using the chemical features of particles the performance of the following classical supervised algorithms was tested: K-nearest neighbors, support vector machine, decision tree, random forest and multi-layer perceptron. This work shows that despite the entrenched position of unsupervised clustering algorithms in the field, the use of supervised algorithms has the potential to replace the manual step of clustering algorithms in many applications, where real-time data analysis is essential. For the classification of the eight classes, the prediction accuracy of several supervised algorithms exceeded 97 %. The trained model was used to classify ~49,000 particles from a blind dataset in 0.2 seconds, taking into account also a class of “unclassified” particles. The predictions are highly consistent with the results obtained in a previous study using ART-2a.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Alarack发布了新的文献求助10
2秒前
3秒前
Xiaosi完成签到,获得积分10
3秒前
wjswift完成签到,获得积分10
4秒前
lisui发布了新的文献求助10
4秒前
Lucas应助fangzhang采纳,获得10
6秒前
从容的盼晴完成签到,获得积分10
6秒前
豆豆豆莎包完成签到,获得积分10
6秒前
踏歌完成签到,获得积分20
7秒前
Akim应助卤蛋采纳,获得10
8秒前
负责以山完成签到 ,获得积分10
8秒前
代111应助老实不尤采纳,获得10
8秒前
yangya完成签到,获得积分10
8秒前
9秒前
9秒前
lyjj023完成签到,获得积分10
9秒前
量子星尘发布了新的文献求助10
10秒前
10秒前
踏歌发布了新的文献求助10
12秒前
可爱的函函应助yangph采纳,获得10
12秒前
打打应助jitianxing采纳,获得10
12秒前
乐乐应助张若虚采纳,获得10
13秒前
12345发布了新的文献求助10
14秒前
15秒前
15秒前
涛声依旧发布了新的文献求助10
15秒前
hhc发布了新的文献求助10
16秒前
自然卷完成签到,获得积分10
18秒前
18秒前
幻影阡曦发布了新的文献求助10
19秒前
浮荒发布了新的文献求助10
21秒前
晓婷婷完成签到 ,获得积分10
22秒前
顶天立地发布了新的文献求助10
22秒前
啊啊啊发布了新的文献求助10
23秒前
卤蛋发布了新的文献求助10
23秒前
aliu发布了新的文献求助30
24秒前
xu1227发布了新的文献求助10
27秒前
追寻的问玉完成签到 ,获得积分10
28秒前
你的qq给你的qq的求助进行了留言
29秒前
贪玩含卉完成签到,获得积分10
29秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
El poder y la palabra: prensa y poder político en las dictaduras : el régimen de Franco ante la prensa y el periodismo 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5603979
求助须知:如何正确求助?哪些是违规求助? 4688823
关于积分的说明 14856475
捐赠科研通 4695849
什么是DOI,文献DOI怎么找? 2541066
邀请新用户注册赠送积分活动 1507256
关于科研通互助平台的介绍 1471832