Noise-robust registration of microscopic height data using convolutional neural networks

人工智能 稳健性(进化) 计算机科学 过度拟合 卷积神经网络 计算机视觉 人工神经网络 噪音(视频) 模式识别(心理学) 图像(数学) 生物化学 基因 化学
作者
Stefan Siemens,Markus Kästner,Eduard Reithmeier
标识
DOI:10.1117/12.2644620
摘要

In this work, a deep convolutional neural network is proposed to improve the registration of microtopographic data. For this purpose, different mechanical surfaces were optically measured using a confocal laser scanning microscope. A wide range of surfaces with different materials, processing methods, and topographic properties, such as isotropy and anisotropy or stochastic and deterministic features, are included. Training and testing datasets with known homographies are generated from these measurements by cropping a fixed and moving image patch from each topography and then randomly perturbing the latter. A pseudo-siamese network architecture based on the VGG Net is then used to predict these homographies. The network is trained with a supervised learning approach where the Euclidean distance between the predicted and the ground truth gives the loss function. The 4-point homography parameterization is used to improve the loss convergence. Furthermore, different amounts of image noise are added to enhance the prediction’s robustness and prevent overfitting. The effectiveness of the proposed method is evaluated through different experiments. First, the network performance is compared to intensity-based and feature-based conventional registration algorithms regarding the resulting error, the noise-robustness, and the processing speed. In addition, images from the Microsoft Common Objects in Context (COCO) dataset are used to verify the network’s generalization capability to new image types and contents. The results show that the learning-based approach offers much higher robustness regarding image noise and a much lower processing time. In contrast, conventional algorithms have a smaller registration error without image noise.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yangxs1995完成签到,获得积分10
刚刚
刚刚
111发布了新的文献求助10
1秒前
不摸鱼轩完成签到,获得积分10
2秒前
科研狗完成签到,获得积分10
2秒前
高贵宝莹完成签到,获得积分10
2秒前
碎落星沉发布了新的文献求助10
3秒前
今后应助土豆菜卷采纳,获得10
3秒前
科目三应助寒月如雪采纳,获得10
3秒前
3秒前
迅速大白菜真实的钥匙完成签到,获得积分10
3秒前
yangxs1995发布了新的文献求助10
4秒前
Alina_he发布了新的文献求助10
4秒前
科研通AI2S应助科研通管家采纳,获得10
4秒前
子车茗应助科研通管家采纳,获得20
4秒前
浮游应助科研通管家采纳,获得10
4秒前
浮游应助科研通管家采纳,获得10
4秒前
4秒前
香蕉诗蕊应助科研通管家采纳,获得10
4秒前
乐乐应助科研通管家采纳,获得10
4秒前
ydq完成签到 ,获得积分10
4秒前
shhoing应助科研通管家采纳,获得10
4秒前
4秒前
田様应助科研通管家采纳,获得10
4秒前
4秒前
香蕉诗蕊应助科研通管家采纳,获得10
4秒前
zhhua发布了新的文献求助10
4秒前
科研通AI6应助科研通管家采纳,获得10
4秒前
深情安青应助科研通管家采纳,获得10
4秒前
科研通AI6应助科研通管家采纳,获得10
4秒前
Lucas应助科研通管家采纳,获得10
5秒前
有为完成签到,获得积分10
5秒前
香蕉诗蕊应助科研通管家采纳,获得10
5秒前
NexusExplorer应助科研通管家采纳,获得10
5秒前
5秒前
华仔应助科研通管家采纳,获得10
5秒前
浮游应助科研通管家采纳,获得10
5秒前
香蕉诗蕊应助科研通管家采纳,获得10
5秒前
张泽龄完成签到 ,获得积分10
5秒前
英俊的铭应助科研通管家采纳,获得10
5秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Limits of Participatory Action Research: When Does Participatory “Action” Alliance Become Problematic, and How Can You Tell? 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5544911
求助须知:如何正确求助?哪些是违规求助? 4630713
关于积分的说明 14617872
捐赠科研通 4572428
什么是DOI,文献DOI怎么找? 2506841
邀请新用户注册赠送积分活动 1483828
关于科研通互助平台的介绍 1455235